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Preface

Meteorite impacts are getting plenty of respect these days. The public regards them as

the established destroyer of dinosaurs and as the possible destroyer of civilization. The large

planetary, science community sees impacts as the process that helped form the solar system

and is still modi_'ing planets more than 4 b.y. later. Increasing numbers ofgeoscientists are
coming to appreciate the importance of meteorite impact events and the extent of their

influence on the geological and biological history of Earth.

However, despite the growing importance of meteorite impact phenomena in terrestrial
geology, the topic is still not widely addressed in general geoscience textbooks and references.

(Some exceptions are Dence andRobertson, 1989; Philpatts, 1990, Chapter 14-9; Me/ash,

1992; and Hibbard, 1995, Chapter 24.) The geoscientist seeking instruction and information

about impacts therefore faces a body of literature that, although large, is both specialized and
scattered: isolated review articles (e.g., Grieve, 1991; Grieve andPesonen, 1992; Grieve and

Pilkington, 1996); older volumes on shock waves and cratering mechanics (Roddy eta/., 1977;

Melosh, 1989) and shock metamorphism (French and Short, 1968); collections of papers in
special issues of various journals (Horz, 1971; Nico/aysen andReimald, 1990; Pesonen and

Henkel, 1992; Glikson, 1996b); and several good histories and memoirs (Hoyt, 1987; Mark,

1987;Alvarez, 1997).The linking of meteorite impacts to at least one extinction event

(Alvarez et al., 1980) has brought impact processes into the geological mainstream, and this

trend is reflected by the appearance of several Special Papers of the Geological Society, of

America, each one a collection of technical papers involving extinctions (Silver and Schultz,

1982; Sharpton and I/Vard, 1990; Ryder et al., 1996) and planetary cratering (Dress/er eta/.,

1994; Kaebe_q and Anderson, 1996a). More recently, several books have given serious con-

sideration to large impact events in the present (Spencer andMitton, 1995) and to the

hazards associated with possible impact events in the future (Chapman andMorrison, 1989;
Gehrels, 1994).

It is therefore surprising and unfortunate that no complete and systematic introductory

textbook for geoscientists has yet appeared. With this book, I have attempted to fill this gap

and provide for geoscientists a detailed introduction and overview of impact processes, crater
formation, and shock metaraorphism. The book is not intended for a general reader, nor is it

aimed primarily at specialists actually working in impact geology. It is intended for geoscien-

tists of all kinds: students who want to learn about the importance of meteorite impact;

professors who want to add impact information to their geoscience courses; and professional

geologists who may unexpectedly encounter an impact structure in the next field area or in
the next drill core.

The book therefore emphasizes terrestrial impact structures, field geology, and particularly

the recognition and petrographic study of shock-metamorphic effects in terrestrial rocks. As

a result, I have deliberately left out or summarized only briefly many important and exciting

aspects of impact geology: shock-wave physics, cratering mechanics, cratering on other

planets, ejecta formation and deposits, extinction mechanisms, geochemical and geophysical
studies of impact structures, and tektites. However, I have included literature references to

get the interested reader started on further exploration in these fields.

Although this book could be used as a textbook, albeit a very focused one, I view it as a

combination of sourcebook, laboratory manual, and reference for working geologists. The

chapters are designed to be read independently, depending on the background and needs of

the reader. Nonspecialists or readers interested in general information can explore the early

chapters (Chapters 1 and 2). Geoscientists with backgrounds in structural geology, mineral-

ogy, and petrology may' prefer to go directly to the detailed information on cratering

mechanics (Chapter 3), shock-metamorphic features (Chapter 4), impactites (Chapter 5),

impact melts (Chapter 6), or the detection and identification of new impact structures

(Chapter 7). With this presentation, some introductory material is repeated in different
chapters, but I hope the arrangement will be useful for a wide range of readers interested

in various aspects of impact.
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In any field of science, the fine details of terminology are complicated _nd often controversial.

Impact geology is no exception. I have tried to keep things simple, even a the loss of some precision.

For example, I use meteorite as a general term for any extraterrestrial obje :t, regardless of size, composi-

tion, or source, that is large enough to strike Earth's surface and to make _ crater. More specific terms

(asteroid, comet, projectile, etc.) are reserved for more specific contexts. S imilarl); I use impact crater

and impact structure more or less interchangeably, despite the actual diffc rences that exist between
them Finally, I have kept the classification ofimpactites (breccias, impact melts, etc.) as simple as

possible. I hope this approach will help communicate information to all k nds of readers and will also

prepare specialists to explore the details as needed.
I owe a great deal to many colleagues, who responded both promptly a ld generously to my many

requests for samples, photographs, literature references, and other materi_l needed for this book. I am

especially grateful to those who supplied photographs, particularly Richar J Grieve, Glenn Izett, and

Dieter St6ffler. The reader will 'also note my extensive reliance on Jay Md 3sh's textbook (Melosh, 1989),

which, after nearly a decade, still remains an essential sourcebook on the theoretical aspects ofcrater-

ing mechanics and shock metamorphism. I am equally indebted to other :olleagues who reviewed the

various versions of the changing manuscript, and whose criticisms and co mnents produced major

improvements: Burkhard Dressier, Richard Grieve, Fred H6rz, Christiar Koeberl, Bruce Marsh,

Anthony Philpotts, Virgil Sharpton, Richard Wunderman, and Mary-Hi 1 French. Any errors,

misstatements, and other flaws that managed to survive are entirely my o_m.

I am also grateful to the staffat the Lunar and Planetary Institute, esp,:cially Mary Cloud, for their
continued interest in this undertaking, for their patience while it was slo_ ly taking shape, and for their

usual speed and editorial excellence in the final production. I thank Debt:, Rueb and Mary Ann Hager

for providing graphics and other resources from the LPI library, and Step aen L. Hokanson and
Rened Dotson for their editorial and digital publishing expertise. Williarr K. Hartmann generously

provided one of his striking paintings for use on the cover. Finally, I am g'ateful for the continued
support of the Smithsonian Institution, which allowed me to continue wc,rking on this book as a

Research Collaborator in the Department of Mineral Sciences since 199_.

The field of impact geology continues to expand in scope and importa ace, as the statistically minded

reader can see from the bibliography; the number and varie_ of articles oa the subject published in

.just the last five years is impressive. Even though approximately 150 terre _trial impact structures are
known, several hundred remain to be discovered and studied, perhaps as t:enuine exercises for students.

Beyond the identification of new impact structures, we are just beginning to explore the role of impacts

in major geological processes: the actual mechanisms by which extinctioJ is are produced, the recogni-

tion of distal ejecta deposits in the geological record, and the role oflarge impacts in shaping the

Precambrian Earth. I hope this book will help in the explorations to com :.

Bevan M. French

Chevy Chase, Maryland

September 1998
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Landscapes with Craters: Meteorite Impacts,

Earth, and the Solar System

1.1. THE NEW GEOLOGY: METEORITE

IMPACTS ON THE EARTH

During the last 30 years, there has been an immense and

unexpected revolution in our picture of Earth and its place

in the solar system. What was once a minor astronomical

process has become an important part of the geological main-

stream, hnpacts of extraterrestrial objects on the Earth, once

regarded as an exotic but geologically insignificant process,

have now been recognized as a major factor in the geological

and biological histo_ of the Earth. Scientists and the public
have both come to realize that terrestrial impact structures

are more abundant, larger, older, more geologically complex,

more economically important, and even more biologically

significant than anyone would have predicted a few decades

ago. Impact events have generated large crustal disturbances,

produced huge volumes of igneous rocks, formed major

ore deposits, and participated in at least one major biologi-
cal extinction.

Before the 1960s, collisions of extraterrestrial objects with

the Earth were not considered significant. Geologists did

agree (and had agreed since the early 1800s) that pieces of
extraterrestrial material did occasionally penetrate the atmos-

phere and strike Earth's surface, but the only visible results
of such collisions were a collection of meteorites to study

and display in museums, together with a few small and

geologically short-lived meteorite craters, usually located in

out-of-the-way desert areas (Fig. 1.1). Almost no one be-

lieved that extraterrestrial objects could produce major geo-

logical effects or that such projectiles could be any more than
a local hazard.

This simple view has changed drastically, and the change

reflects two major factors: (1) explorations of the solar sys-

tem by humans and robotic spacecraft, which have estab-

lished the importance of impact cratering in shaping all the

planets, including Earth (Taylor, 1982, Chapter 3; 1992,

Chapter 4); and (2) the ability to definitely identify terres-

trial impact structures, especially large or ancient ones,

by the presence of unique petrological and geochemical

criteria, particularly the distinctive shock-metamorphic
effects produced in rocks and minerals by the intense shock

waves generated in impact events (French, 1968a; French and

Short, 1968).

In the last few decades, geologists have gradually realized

that collisions of extraterrestrial objects with Earth -- and

especially the rare but catastrophic impacts of kilometer-sized

asteroids and comets -- have significantly shaped Earth's

surface, disturbed its crust, and altered its geological history
(French, 1968a, 1990b; Shoemaker, 1977; Grieve, 1987, 1990,

1991; Nicolaysen and Reimold, 1990; Pesonen and Henkel,
1992; Dressler et al., 1994).

The record of impacts on Earth is still being deciphered.

Approximately 150 individual geological structures have
already been identified as the preserved results of such im-

pacts (Grieve, 1991, 1994; Grieve et al., 1995; Grieve and
Pesonen, 1992, 1996), and it is estimated that several hun-

dred more impact structures remain to be identified (Trea6l

and Raup, 1990; Grieve, 1991). The known impact struc-

tures (Fig. 1.2) range from small circular bowls only a few

kilometers or less in diameter (Fig. 1.1) to large complex
structures more than 200 km in diameter and as old as

2 Ga (Figs. 1.3 and 1.4). Formation of the larger features,
such as the Sudbury (Canada) and Vredefort (South Africa)

structures, involved widespread disturbances in Earth's crust

and major perturbations in the geologic history of the re-

gions where they were formed.
In addition to the geological disturbances involved, im-

pact events have produced several geological structures

with actual economic value; a production value of about

$5 billion per year has been estimated for North American



2 Traces o]'Catastrophe

Fig. 1.1. A simple impact crater. Barringer Meteor Crater (Arizona), a young,' veil-preserved, and well-known impact crater, 1.2 km

in diameter, has become the type example for small, bowl-shaped impact craters o: 'the simple type. The crater was formed about 50,000

years ago when an iron meteorite approximately 30 m across struck the horizont d sediments of northern Arizona's Colorado Plateau.

After decades of controversy, the impact origin of the crater has been firmly establ shed by the presence of preserved iron meteorites, the

recognition of unique shock-metamorphic features in its rocks, and geological stud es that detailed the mechanisms of its formation.This

aerial view, looking northwest, shows typical features of young simple impact crat, rs: a well-preserved near-circular outline, an uplifted

rim, and hummocky deposits of ejecta just beyond the rim (e.g., white areas at lcwer left). The uplifted layers of originally horizontal

sedimentary target rocks can be seen in the far rim of the crater at the right. (Phot 3graph copyright D.J. Roddy; used with permission.)

impact structures alone (Grieve andMasait& 1994). The eco-

nomic products of impact structures include such diverse

items as local building stone, diamonds, and uranium.

Hydrocarbons (petroleum and gas) are an especially impor-

tant product from impact structures (Donofrio, 1997;Johnson

and Campbell, 1997). Large impacts crush and shatter the

target rocks extensively beneath and around the crater; in a

few structures [e.g., Ames (Oklahoma); Red Wing Creek

(North Dakota)], the resulting breccia zones have served as

traps for oil and gas. Within and around other impact cra-

ters, the other kinds of breccias produced by the impact

have provided building stone [Ries Crater (Germany);

Rochechouart (France)] and industrial limestone [Kentland

(Indiana)]. In some cases, the sediments that subsequently

fill the crater depressions may contain deposits of such eco-

nomic materials as oil shale [Boltysh (Ukraine)], diatomite

[Ragozinka (Russia)], gypsum [Lake St. Martin (Canada)],

and lead-zinc ores [Crooked Creek (Missouri)].

The biggest impact-related bonanza (current production

about $2 billion per year) is the Sudbury structure (Canada),

which contains one of the largest nickel-copper sulfide de-

posits on Earth (Guy-Bray, 1972; E. G. Pye et al., 1984;

Dressler et al., 1994; Lightfoot and Naldrett, 1994). The de-

posit occurs at the base of a large igneous body (the Sudbury

Igneous Complex), which is in turn emplaced in a large, com-

plex, and highly, deformed impact basin nearly 2 b.y. old.

Terrest: ial life itself has not escaped this cosmic bom-

bardment. During the last 20 years an impressive amount of

evidence I"as accumulated to show that at least one large

impact ev_ nt about 65 m.y. ago redirected biological evolu-

tion on E_ rth by producing the major extinction that now

marks the boundary between the Cretaceous and Tertiary

periods, tl-e point at which the dinosaurs died and mam-

mals (our :ncestors) became major players in the history of

terrestrial life (dlvarez et al., 1980; Silver and Schultz, 1982;

McLaren _ nd Goodfellov:, 1990; Sharpton and Ward, 1990;

Ryder et al. 1996; dlvarez, 1997). The giant crater produced

by that col ision has now been definitely identified, a struc-

ture [Chic: aalub (Mexico)] at least 180 km across, completely

buried um[er the younger sediments of Mexico's Yucat_in

Peninsula (Hildebrand et al., 1991; Sharpton et al., 1992;

Morgan et, _l., 1997). Active debates continue about how this

catastrophic event actually produced the extinction and

whether si:nilar impacts have caused the other major and

minor exti actions recorded in the geologic record.

Althou i,,h the recognition of impact events and their ef-

fects on E: xth has been marked by debate and controversy

(e.g., Diet_, 1963; Bucher, 1963; French, 1968a, 1990b;

Sharpton a_d Grieve, 1990; Nicolaysen and Reimold, 1990),

there is no longer any need to demonstrate either the exist-

ence or th,: importance of such impact events. The young

but maturing science of impact geology is turning toward



A Note on Style

Metric and standard international (SI) units are used throughout. Length units are meters (m), millimeters (mm), centi-

meters (cm), decimeters (dm), kilometers (km), and micrometers (tam). In planetary' discussions, the astronomical unit (AU)

is also used; 1 AU = 150 x 106 km. Mass units are grams (g), milligrams (mg), kilograms (kg), and micrograms (_tg). Larger
masses are given in tons (T, 1 T = 106 kg), kilotons (kT, or 103 T), and megatons (MT, or 106 T).

Ages of stratigraphic units or times of geologic events are given in kilo-annum (ka, 103 years before present), Mega-
annum (Ma, 106 years before present), and Giga-annum (Ga, 109 years before present). ("Present" in this sense refers to 1950

A.D.) Length units of time used are billion years (b.y.), million years (m.y.), years (yr), minutes (min), and seconds (s).

Energies are given in joules (J). Pressures are in gigapascals (GPa); 1 GPa = 10 kilobars (kbar); 100 GPa = 1 Megabar

(Mbar). Other miscellaneous abbreviations used are diameter (D) and Cretaceous-Tertiary (K/T).

Technical terms are highlighted where the}, are first defined in the text. Terms directly related to cratering and shock
metamorphism are shown in boldface; other technical terms are shown in italics.
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4 Traces of Catastrophe

Fig. 1.3. Dual complex impact structures. Clearwater Lakes

(Canada), two large, deeply eroded complex impact structures, both

with central uplifts, were formed at ~290 Ma by an unusual double

impact into the massive crystalline rocks of the Canadian Shield.
In the larger structure, Clearwater Lake West (D = 32 km), the

central uplift is expressed by a prominent ring of islands about

10 km in diameter; the islands are capped by units of breccias

and impact melt. In the smaller Clearwater Lake East (D =

22 km), the central uplift is covered by the waters of the lake. North-

east is at the top of the picture. (STS 61A image 61A-35-86.)

or volcani,: activity) had been debated for just as long (for

historical 'eviews, see Hoyt, 1987; Mar/e, 1987; Wilhelms,

1993). Th_ Apollo program provided better views of the lu-

nar surfac_, as well as samples returned by astronauts, and

this comb nation gradually but definitely established the

impact ori _in of most lunar craters (Wilhdms et al., 1987;

Hb'rz eta]. 1991; Taylor, 1992, Chapter 4).

Beyonc the Moon, spacecraft revealed impact craters on

every solk planetary surface that we could see: the other

terrestrial planets Mercury, Venus (Fig. 1.7), and Mars

(Figs. 1.8 :rod 1.9); the satellites of the gas-giant planets in

the outer s )lar system (Figs. 1.10 and 1.11); and even small

asteroids (rig. 1.12)•

The ge_ leral acceptance of lunar and planetary craters as

the results of impact events (Taylor, 1982, Chapter 3; 1992,

Chapter 4) was based on several lines of evidence: their abun-

dance on ,I1 solid planetary surfaces, their occurrence on

objects of greatly differing composition (rocky, icy) and on

surfaces ot varying ages, the wide range of crater sizes ob-

new problems: finding the hundreds of undiscovered im-

pact structures still preserved on Earth, discovering the full

extent of impact effects on Earth, establishing the mecha-

nisms by which large impacts produce geological and bio-

logical effects, understanding the puzzling chemical and

mineralogical changes that occur in the extreme physical

conditions of the impact environment, and using preserved

terrestrial impact structures to better define the complex

mechanics by which impact structures form on Earth and

other planets.

1.2. THE PLANETARY PERSPECTIVE

The recognition of the importance of meteorite impacts

on Earth has come largely from the study of other planets.

Explorations of the Moon and the solar system by astro-

nauts and robotic spacecraft in the 1960s and 1970s dem-

onstrated that impact cratering has been, and still is, a major

process in the origin and evolution of all the solid bodies of

the solar system, from Mercury to the moons of Neptune

(for summaries and references, see Taylor, 1982, Chapter 3;

1992, Chapter 4). The abundant craters on the surface of

our Moon (Figs. 1.5 and 1.6) had been known for centuries

since the time of Galileo, and their origin (either by impacts

Fig. 1.4. ,k giant impact structure. One of the largest known

terrestrial il 1pact structures, Vredefort (South Africa) is located

in the cent, r of the Witwatersrand Basin, about 100 km from

Johannesbu g. With an age of nearly 2 Ga, the structure has been

so deeply el oded that only subcrater rocks are still exposed, and

the souther _ half of the structure has been covered by younger

sediments. "_"he structure now appears as a central core of uplifted

ancient grar itic rocks about 40 km in diameter (circular light-col-

ored area in center), surrounded by a collar of upturned younger

sediments a__dbasalt lavas. This raised central core and collar rocks,

about 80 kr Lin diameter, is now believed to be only the central

part of an i npact structure originally 200-300 km in diameter.

Despite the great age and deep erosion, the impact origin of

Vredefort h;.s been definitely established by a variety of preserved

shock-metamorphic effects: shatter cones, planar deformation

features in quartz, and the high-pressure minerals coesite and

stishovite. North is approximately at the top. (STS 8 image 08-

35-1294.)



Fig.1.5. Heavilycrateredlunarhighlands.Thelight-colored
highlandregionsoftheMoonrecordanintenseandancientbom-
bardmentbetweenabout4.5Gaand3.8Ga.Duringthistime,
crateringrateswerehundredstothousandsoftimestheirpresent
values,andthehighlandsurfacesweresaturatedwithlargecraters
>10kmindiameter.Thisviewofthefarsidehighlands,looking
southfromthelunarequator,showstwolargecompleximpact
craters:Green(D=90km)(uppercenter)andHartmann(D=
70 kin) on its left. These two complex craters, which show typical

central uplifts and collapsed terraces in the inner walls, are accom-

panied by large numbers of smaller craters. The crater Hartmann

also cuts the rim of the older impact basin Mendeleev (D = 330 kin),

part of which can be seen at the left. The spiral-like rod at left

center is an instrument boom on the Apollo 16 spacecraft, from

which this orbital picture was taken. (Apollo 16 image AS16-M-

2370.)
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and that the ancient, heavily cratered lunar highlands record

a bombardment rate thousands of times higher than that

recorded by the younger maria (Baldwin, 1949, 1963). The

Apollo data confirmed this conclusion and demonstrated that

an intense bombardment of the Moon occurred between its

formation (4.5 Ga) and about 3.8 Ga. The bombardment

rate was most intense at about 4.5 Ga, decreased rapidly until

about 3.8 Ga, and then leveled off(Fig. 1.13) (Wilhdms et

a/., 1987; HSrz et al., 1991; Taylor, 1992, Chapter 4). The

bombardment rate after 3.8 Ga has been approximately con-

stant (Fig. 1.13), although it has been suggested that varia-

tions of perhaps _+2x have occurred, especially during the

Phanerozoic (<600 Ma).

It is now accepted that impact events, especially large ones,

have had a major role in the formation and early history of

the solar system and the solid objects in it. In current theo-

ries of solar system formation, the planets are believed to

have formed by the steady accretion (with collisional im-

pacts) of small objects (planetesimals) in an original solar

nebula. But newer, post-Apollo theories suggest that large

impact events, affecting nearly grown planets, may be re-

sponsible for many unexplained problems of planetary

motions, compositions, and atmospheres (TayloT; 1992,

Chapter 4). Many chemical and dynamical problems con-

cerning the origin of the Moon are explained by the current

theory that the Moon formed as the result of a collision be-

served (from tiny microcraters < 1 mm across on lunar rocks

to great ringed basins >2000 km in diameter), their consis-

tent and regular morphology, and their presence on tinybod-

ies (e.g., asteroids) too small to have ever generated internal

volcanic activity.

The abundance of well-preserved impact craters on plan-

etary surfaces of all kinds made it possible to use crater fre-

quencies to determine relative geological ages, based on the

simple principle that older surfaces accumulate more craters

(Shoemaker andHackman, 1962; Shoemaker et al., 1963). On

the Moon, where crater counts could be combined with ab-

solute ages obtained by radiometric dating of returned

samples, it became possible to estimate the flux of objects

bombarding the Moon (and by implication, Earth as well)

over geologic time by counting the craters of different sizes

on surfaces of known age. However, application of the lunar

data to other planets lacking absolute age data has been a

complicated and problematic process (Taylor, 1992, Chap-

ter 4).

Even before the Apollo program, it was recognized that

the lunar bombardment rate had not been constant over time

Fig. 1.6. Lightly cratered lunar maria. The much lower bom-

bardment rate on the Moon since 3.8 Ga is clearly' reflected in the

lightly cratered character of these younger lava flows that fill the

lunar maria in the lower half of this image. Craters are scattered

and much smaller than those developed in highland areas. This

view shows Mare Nubium in the south-central part of the Moon's

nearside. The dark lava flows exposed here are relatively, young

by' lunar standards (about 3.2-3.5 Ga). Bullialdus, the large fresh

complex crater near the horizon, is about 60 km in diameter.

The spiral-like rod at left center is an instrument boom on the

Apollo 16 spacecraft, from which this orbital picture was taken.

(Apollo 16 image AS16-M-2492.)
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Fig. 1.7. Complex impact craters on Venus. Large, well-

preserved impact craters on the surface of Venus were revealed by

the Magellan spacecraft, which used an imaging radar system to

penetrate the planet's opaque atmosphere. In this "crater farm"

area, three large, well-preserved impact structures have been

produced on a low-relieL slightly fractured surface that may consist

of basalt lava flows. The "colors" in this picture actually represent

different degrees of surface roughness detected by Magellan's radar

system; dark surfaces (the target surface and the crater interiors)

are smooth, while lighter areas (crater ejecta blankets and linear

fractures in the preimpact surface) are rougher. The three largest

craters show features t._Tfical of complex impact structures: circular

outlines, complex central uplifts, and surrounding deposits of lobate

ejecta. Aglaonice, the largest crater (center right), is 63 km in

diameter. (Magellan image JPL P-36711.)

In mosl exposed terrestrial impact structures, such sur-

face featur_:s have been removed by erosion, and the present

surface exp.)ses deeper levels within or even beneath the origi-

nal crater. 'Terrestrial structures thus provide a unique third

dimension to cratering studies, and their accessibility makes

possible a _ride range of investigations not possible on other

planets. Tel restrial impact structures can be mapped, sampled,

drilled, anc analyzed in great detail, and they have provided

critical "gr, _und truth" for understanding impact phenom-

ena on other planets. Many fundamental concepts ofcratering

mechanics -- crater modification, central uplifts, impact melt

formation and emplacement -- have been established on

terrestrial _tructures (Shoemaker, 1963; Dence, 1968, 1971;

Milton et _l., 1972; Dence et al., 1977; Grieve et al., 1977,

1981; Grieve and Cintala, 1981, 1992) and then applied

to craters ¢lsewhere in the solar system (e.g., Cintala and

Grieve, 19! 8).

1.3. A ?ECULIAR PROCESS: WHY IMPACTS

ARE DIFFERENT

Large ii apact events differ in many ways from more fa-

miliar geol 3gical processes like volcanic explosions, earth-

quakes, an_ the slow movements of plate tectonics. Much of

tween a Mars-sized object and the larger proto-Earth at about

4.5 Ga (Hartmann et al., 1986). Similar impacts may have

stripped offthe silicate mantle of the planet Mercury, leav-

ing the present iron-rich object (Benz etal., 1988), may have

removed the early primordial atmospheres of the planets

(Melosh and Vickery, 1989; Ahrens, 1993), and may be re-

sponsible for the fact that Uranus' axis of rotation is tilted

more than 90 ° from the axes of all the other planets. In con-

sidering the early solar system, large random impact events

have become the method of choice for explaining planetary

anomalies, a situation that provides local explanations but

makes it more difficult to construct uniform theories for plan-

etary development (Taylor, 1992; Chapter 4).

The planetary perspective is a critical part of the study of

terrestrial impact structures. The widespread existence of im-

pact craters throughout the solar system demonstrates that

they must have been equally abundant on Earth, and the

cratered surfaces of other planets make it possible to esti-

mate the intensity and the effects of impact cratering on

Earth. More important, impact craters on Earth and other

planets complement each other. On other planets, where

erosion and tectonics have not been extensive, we can see

the preserved upper levels of craters, the sharply circular form,

the widespread ejecta deposits, the lava-like bodies of im-

pact melt, and the cliffs and terraces formed during crater

development (Figs. 1.5, 1.7, and 1.8).

Fig. 1.8. A complex impact crater on Mars. This young complex

crater (Yu_ D = 19 kin) shows typical features: a circular out-

line, highly t, :rraced interior walls, an unusually pronounced central

peak, and a surrounding blanket of highly lobate ejecta. The

complex app _arance of the ejecta blanket suggests that it may have

been partly f uidized by water melted from ice deposits within the

target by the impact, and the exaggerated central peak may also

reflect the existence of a lower-strength, volatile-bearing target.

The thinness of the ejecta deposits is indicated by the fact that the

small pre-Yuty crater just tangent to Yug" can still be distinguished

through them. The arcuate structure at lower right is part of the

wall of an older, larger crater. (Viking Orbiter image 003A07.)
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Fig. 1.9. An ancient multiring (?) impact basin on Mars. The

flat-floored Argyre Basin (upper left) (D = 900 km) is apparently

the youngest large impact basin recognized on Mars, but it is still

an ancient and heavily eroded structure that has itself been struck

by large projectiles since it formed (e.g., the large crater cutting

the basin rim at top). This orbital panorama shows the smooth

floor deposits within the basin and the mountainous nature of the

enclosing rim. Because of the high degree of erosion, the actual

diameter of Argyre is uncertain; a minimum diameter of about

900 km is indicated by the rugged rim shown in this picture, but

the existence of additional rings (with diameters of 540, 1140, and

1852 kin) has been suggested. The white streaks above the horizon

(upper right) are hazes in the thin martian atmosphere. (Viking
Orbiter image JPL P-17022.)

the past confusion and controversy about meteorite impact

on Earth has arisen from the fact that the chief features

of large impact events are unfamiliar to geologists and the

public alike.

1.3.1. Rarity

Unlike other geological processes, large meteorite impacts

are rare, even over geological timescales, and there have been

(fortunately) no historical examples of such events. For most

people, the impact process involves only the occasional fails

of small meteorites, which produce excitement and public

interest, but only occasional minor damage. This lack of di-

rect human experience with large impact events sets them

apart from more familiar recurrent geological "catastrophes"

such as floods, earthquakes, and volcanic eruptions and makes

them harder to appreciate.

Fig. 1.10. Impact craters on one of Saturn's moons. Like man)'

moons of the outer planets, Dione (D = 1120 km) is a low-densiq'

object composed largely or completely of ices. The surfaces of Dione

and many other moons show abundant impact craters as well as a

variety of other terrain types that probably reflect different degrees

of internal activity. One hemisphere of Dione (left) shows abundant,

well-preserved impact craters, while the other hemisphere (right)

shows wispy streaks that may reflect fracturing or the eruption of

volatiles. The larger craters show typical complex-crater mor-

phologies with central peaks and terraced walls, e.g., Dido (left

center; D = 120 km) and Aeneas (top, near horizon; D = 155 km).

(Voyager 1 image JPL P-23101.)

1.3.2. Immense Energy

Large impact events release energies that are almost in-

comprehensibly large by the more familiar standards of earth-

quakes and volcanic explosions. The energy of an impact

event is derived from the kinetic energy of the impacting

projectile and is equal to 1/2 mv 2, where m is the projectile

mass and v its velocit-y. Because velocities of impacting ob-

jects are high, typically tens of kilometers per second, ki-

netic energies are also large, even for small objects (for details,

see below and Table 2.1). An object only a few meters across

carries the kinetic energy of an atomic bomb, and its impact

could devastate a large city. Furthermore, unlike earthquakes

and volcanic explosions, where the properties of Earth itself

provide some upper bounds to the energy release, the im-

pact energy is limited only by the mass and velocity of the

projectile. The impact of an object only a few kilometers

across (still smaller than many known asteroids and comets)

can release more energy in seconds than the whole Earth

releases (through volcanism, earthquakes, tectonic processes,

and heat flow) in hundreds or thousands of years.

1.3.3. Instant Effects

Another critical difference between impacts and other

geological processes is that the energy release in an impact

event -- and the formation of the resulting crater -- is vir-
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Fig. 1.11. Impact craters on a moon of Neptune. Triton,

Neptune's largest moon (D = 2700 km), is now the most distant

solid object in the solar system to be photographed at close range.

When examined by the Voyager 2 spacecraft in 1989,Triton turned

out to be an unexpectedly dense ice-rock world with a poorly

understood geological history and a surface modified by ice

deformation, possible melting and water flooding, erupting geysers

of nitrogen, and strong winds. Despite this active and ongoing

history, Triton's surface still preserves the results of meteorite

bombardment.The large scalloped basin (left), about 200 km across,

may represent a large impact structure subsequently modified by

faulting, flooding, and filling with water ice. A sharp young impact

crater about 15 kin across has formed on the older surthce, and

other craters of similar size and sharpness are scattered across the

region. The rari_ of small, fresh, and young impact craters indicates

that this part of Tritoffs surface is relatively young and has recently

been modified by internal processes. (Voyager 2 image JPL P-

34692.)

A small impact, releasing the energy of only a few mil-

lion tons o'TNT (approximately the amount released by a

hydrogen Lomb), is similar in total energy to a severe earth-

quake or v )Icanic explosion, and its effects will be largely

local (e.g., _ 7ring, 1997). But a large impact transmits so much

energy into the target that an impact structure tens or hun-

dreds of ki_ ometers in diameter is formed, accompanied by

catastrophi : environmental effects on a continental or glo-

bal scale.

The near-surface release of impact energy, and the trans-

fer ofmuc_ of the energy directly into the biosphere, makes

large impa_ t events especially effective in causing devastat-

ing and wic [espread biological extinctions. Current impact-

related moJels for the major Cretaceous-Tertiary (K/T)

extinction ( e.g., Silver and Schultz, 1982; Sharpton and Ward,

1990; Krin_, 1993; Ryder et al., 1996) indicate that, during

the impact that formed the Chicxulub crater at 65 Ma, as

much as 2._-50% of the projectile's original kinetic energy

was conver :ed into heat. This heat not only vaporized the

projectile it self, but also melted and vaporized large volumes

of the near. surface sedimentary target rocks, releasing large

amounts ot CO 2 (from carbonates) and SO 2 (from evapor-

ites). Introc uced into Earth's atmosphere, together with large

quantities ,_f impact-produced dust, these gases and their

reaction pr( ducts could produce major environmental effects:

immediate ]arkening and cooling, subsequent global warm-

ing, and de uges of acid rain. Any of these consequences, or

a combinat ion of them, could have produced the resulting

widespread extinction.

tually instantaneous. At the instant of impact, the object's

kinetic energy is converted into intense high-pressure shock

waves, which radiate rapidly outward from the impact point

through the target rocks at velocities of a few kilometers per

second (see e.g., Melosh, 1989, Chapters 3-5). Large vol-

umes of target rock are shattered, deformed, melted, and even

vaporized in a few seconds, and even large impact structures

form in only minutes. A 1-km-diameter crater [about the

size of Barringer Meteor Crater (Arizona)] forms in a few

seconds. A 200-km-diameter structure [like Sudbury

(Canada) or Vredefort (South Africa)] forms in less than

10 minutes, although subsequent geological adjustments,

largely driven by graviF, will continue for many years.

1.3.4. Concentrated Energy Release

Most forms of internal terrestrial energy (heat flow, seis-

mic waves) are released over large areas that are subconti-

nental to global in extent. By contrast, the energy of an impact

event is released instantly, at virtually a single point on Earth's

surface. Most of the energy passes, directly and rapidly, into

the near-surface target rocks, the atmosphere, and the bio-

sphere, where it can produce immediate and catastrophic

changes.

Fig. 1.12. ] mpact craters on an asteroid. The small asteroids that

produce im l_act craters on the larger planets and moons have

themselves rEeen bombarded by larger and smaller objects. Larger

collisions ca_l break asteroids apart, leaving irregular objects such
as Gaspra (wqich has dimensions of about 19 x 12 × 11 km), shown

in this flyby image taken by the Galileo spacecraft in 1991. Smaller

collisions leave surviving asteroids covered with large and small
craters; the largest craters shown here on Gaspra are 1-2 km across.

(Galileo image JPL P-40450-C.)
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Fig. 1.13. Bombardment rates and crater formation during geologic time. This graph summarizes the results of studies in which the

highly variable numbers of craters present on different lunar surfaces have been used to reconstruct the meteorite bombardment rate

within the Earth-Moon system during the last 4 b.y. Lunar crater densities [expressed as the total number (N) of craters with D > 4 km

per square kilometer of surface] have been measured from spacecraft photographs of various highlands and maria surfaces whose ages

have been determined from samples returned by the Apollo (A) and Russian robotic Luna (L) missions. The data (bounded by two solid

lines that indicate estimated uncertainties) are most precise for the well-dated maria surfaces, which have ages of 3.7-3.2 Ga. Ages of the

older highland surfaces are not as well determined, but it is dear that crater-production rates before 3.8 Ga were much higher (->100×)

than in more recent times. The much lower crater formation rate after 3.8 Ga is not statistically different from a constant value (dashed

line); this rate is also consistent with values estimated from the small population of preserved terrestrial impact structures. Age values for

the large lunar craters Copernicus (about 1 Ga) and Tycho (about 100 Ma) have been indirectly determined from Apollo samples

collected elsewhere on the Moon. (From H6rz etal., 1991, Fig. 4.15, p. 84.)

1.3.5. Extreme Physical Conditions

The mechanism by which impacts do their work-- gen-

eration and transmission of intense shockwaves through the

target rocks -- is also unfamiliar to many geologists. Under

normal conditions, rocks in Earth's crust and upper mantle

are subjected to static load pressures produced by the weight

of overlying rocks. These pressures are less than a few

gigapascals (GPa) (1 GPa, a standard unit of pressure, equals

10 4 bar or about 10 4 arm). Normal geological stresses within

Earth generate relatively low strain rates (typicallyl0-3/s

to 10-6/s), and rocks either deform slowly at lower pressures

or fracture at higher pressures when their yield strengths (a

few GPa) are exceeded. The general tendency of terrestrial

rocks to fracture when the pressure gets too high, thus re-

leasing the pressure, limits the pressure buildup in ordinary

geological processes (e.g., earthquakes) to a few GPa.

These "normal" conditions do not exist in impact events.

The rapid release of large amounts of energy in such events

puts too much sudden stress on the target rocks for them to

respond in the normal way. Typical impact velocities of tens

of kilometers per second far exceed the velocities of sound in

the target rocks (typically 5-8 kin/s). The resulting impact-

produced shock waves travel through the target rocks at su-

personic velocities, and they impose intense stresses on the

rocks without giving them time to give way by normal de-

formation. In the shock-wave environment, transient pres-
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sures may exceed 500 GPa at the impact point and may be

as high as 10-50 GPa throughout large volumes of the

surrounding target rock. Transient strain rates may reach

104/s-106/s, orders of magnitude higher than those in ordi-

nary geological processes. At the higher shock pressures

(->60 GPa), shock-produced temperatures can exceed

2000°C, and rapid, large-scale melting occurs immediately

after the shock wave has passed.

1.3.6. Unique Deformation Effects

The extreme physical conditions of pressure, tempera-

ture, and strain imposed by transient shock waves produce

unique effects (e.g., mineral deformation, melting) in the

rocks and mineral grains through which they pass. These

shock-metamorphic effects are distinct from features pro-

duced by normal geological deformation, and they are now

generally accepted as unique products of impact events (for

reviews and references, see French amt Short, 1968; StOJ_er,

1972, 1974; StOffler and Langenhorst, 1994; Grieve et al.,
1996).

Shock-metamorphic effects (or"shock effects") have been

crucial in establishing the importance of extraterrestrial im-

pact events. Preserved meteorites around an impact crater

can provide definite evidence of an impact origin, but only a
small fraction of terrestrial impact structures (about a dozen)

have actual preserved meteorites associated with them. These

structures _ re all relatively small and geologically young. The
Barringer _/Ieteor Crater (Arizona), 1.2 km in diameter and

about 50,0)0 years old (Fig. 1.1), is the largest member of
this group.

The abs ._nceof meteorite fragments around older impact

craters resu ts from two causes: (1) the projectile itself is also

subjected t ) the intense shock waves generated by the im-

pact, and t is almost completely melted and vaporized;

and (2) all neteorites are partly to completely composed of

nickel-iron metal, and even surviving fragments of the pro-

jectile tend to be rapidly destroyed by surface weathering,

except in tl Ledriest desert regions or on polar icecaps.

The rap d destruction of meteorites means that other lines

of evidenc( must be used to identify older or deeply eroded

terrestrial i_npact structures. Shock-metamorphic effects can

be preservcd in rocks for periods of 106-109 years, and they

provide a u lique means of identifying impact structures, es-

pecially on._s that are old, deeply eroded, or both (French

and Short, 1968). The great majority of currently known
impact stru :tures (currently over 150) have no preserved me-

teorites, bu _have been identified by the discovery of shock-
metamorpl dc effects in their rocks (Grieve, 1991; Grieve et
aL, 1995; (:rieve and Pesonen, 1992, 1996).



Target Earth: Present, Past, and Future

Current studies of Earth and the solar system have dem-

onstrated clearly that impact events are a definite part of the

present as well as the past. The multiple impacts of Comet
Shoemaker-Le W 9 on Jupiter in July 1994 (Spencer and

Mitton, 1995) provided the entire world with an awesome

demonstration that, even 4.5 b.y. after formation of the solar

system, the cosmic bombardment process in still going on,
and the catastrophic effects produced by the impacts on

Jupiter provided a graphic -- and disturbing -- example

of what might happen if a similar object should strike
Earth instead.

Several features of the present solar system demonstrate

that impact events -- both actual and potential -- are part
of the current state of Earth as well: (1) the Earth is accom-

panied in the solar system by thousands, possibly millions,

of randomly moving kilometer-sized objects, some of which
could collide with the Earth in the future; (2) small extrater-

restrial objects are continually colliding with Earth, and larger

ones have struck it in the recent past.

2.1. COMETS AND ASTEROIDS:

THE KILLER NEIGHBORS?

The Earth is accompanied in the solar system by many

other solid objects. In addition to the planets and moons,

the solar system contains a large amount of lesser cosmic

debris, objects ranging from microscopic dust particles to

objects tens of kilometers in size, each of which moves in
its own orbit around the Sun. In the size range of interest

for impact events, from a few tens of meters up through tens
of kilometers in size, two kinds of objects can be distin-

guished: asteroids and comets.

2.1.1. Asteroids

Asteroids are small, rocky bodies, regarded as the frag-

ments of small objects (planetesimals) that existed in the in-

ner solar system when the solar system formed, but were not

swept up by growing planets (Binzel et al., 1989). Most as-
teroids are a few kilometers to a few tens of kilometers in

size. A few are larger; Ceres, the largest known, has a diam-
eter of about 1000 kin, or about the size of the state of Texas.

Several thousand asteroids more than a kilometer across have

been discovered, and millions of smaller ones almost cer-

tainly exist. Most asteroids, especially the largest ones, are
located in the asteroid belt, a zone between the orbits of

Mars and Jupiter, and most asteroids -- but not all -- tend

to stay there, safely out of range of Earth.

2.1.2. Comets

Comets are also small objects, typically tens of kilome-

ters in diameter. In contrast to the rocky asteroids, comets

contain a significant amount of volatile ices in addition to

rocky material ( Wilkening, 1982; New, burn et al., 1991). The

evaporation of these icy compounds when comets pass

through the inner solar system and approach the Sun creates
the long, shining tails that make comets such striking ob-

jects in history and superstition. Because they contain so
much low-temperature material, scientists suspect that com-

ets have probably formed as small bodies in the cold outer

solar system.
Comets are divided into two types, based on the shape of

their orbit and on how long they take to make one revolu-

tion around the sun. Short-period comets, such as Comet
Encke and Comet Halley, orbit the Sun in -<200 ),ears. How-

ever, most short-period comets have orbital periods of only

a few years and travel on small, nearly circular orbits like

those of planets and asteroids. Long-period comets, like the
recently observed Comet Hale-Bopp, may take thousands

of years to complete a single orbit, and they travel on highly

elongate orbits that take them far beyond Pluto and pcrhaps
10% of the distance to the nearest star. It has been argued,

both on theoretical grounds and from observations of the

orbits of long-period comets, that the entire solar system is

11
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in fact surrounded, at a distance of about 50,000 AU, by a

vast cloud containing billions of comets (the Oort Cloud),

from which comets are occasionally perturbed (perhaps by

passing stars) into orbits that carry them down into the in-

ner solar system toward the Sun. A similar accumulation of

small icy objects, the KuiperBelt, may exist beyond the orbit

of Neptune and may actually be the source of the short-pe-

riod comets that enter the solar system (Rahe et al., 1994).

2.1.3. Close Encounters

There is nothing that isolates the Earth from these small

but fast-moving objects. Any time the orbit of a comet or
asteroid crosses the orbit of the Earth, a collision is possible.

The majority of asteroids, whose orbits lie within the aster-
old belt between Mars and Jupiter, remain at great distances

from the Earth and pose no danger to it. But not all aster-
oids remain there. Even within the asteroid belt, the orbits

of individual asteroids can be changed by close encounters

with Mars or Jupiter, or by low-velocity collisions with other

asteroids. These random perturbations can put asteroids

into new orbits, some of which enter the inner solar system

and cross the orbits of the inner planets. More than 150
near-Earth asteroids (NEAs) with diameters of ->1 kin,

whose orbits approach or cross the orbit of the Earth, have

already been discovered, and several hundred more are
believed to exist.

In the outer solar system, far beyond Pluto, similar per-

turbations, perhaps caused by passing stars, may nudge

comets out of the distant Oort Cloud and put them onto

highly elliptical orbits that also enter the inner solar system

and may cross Earth's orbit. Eventually, (wer millions of

years or more, some of the asteroids or comets that repeat-

edly cross Earth's orbit will collide with it. There is nothing

to stop them.

2.2 IN OUR TIME: SMALL CATASTROPHES

Even at this moment, collisions of extraterrestrial objects

with Earth are occurring by the billions. Steadily and qui-

etly, Earth itself accumulates about 100 tons of extraterres-

trial material every day (Taylor; 1992, pp. 176-177; Love and
Brownlee, 1993). Almost all this material enters Earth's at-

mosphere as small particles (from microscopic dust to the

size of golf balls); these objects burn up in the atmosphere to

produce visible streaks of light (meteors or"shooting stars")

in the night sky.

Among extraterrestrial objects in the solar system, small

objects (<1 cm) are much more abundant than larger ones,

but larger objects, even though rarer, also strike Earth. Some

tens of objects, ranging in size from a few tens of centime-

ters to a few meters and weighing from a few kilograms to a

few tons, also collide with Earth every year. Most of these

objects are rocky, or metallic fragments of asteroids, and they

are large enough and solid enough to survive passage through

Earth's atmosphere. As they pass through the atmosphere,

their outer parts burn off, they slow down, they hit the ground

at relatively low velocities, and they remain reasonably in-

tact, becoming meteorites.

Earth s rows evidence of many small extraterrestrial col-

lisions in 1he present, but its recent past shows that even

larger obje :ts have struck (or barely missed) Earth during

just the las: few decades.

In 1947, an iron meteorite about 3 m across and weigh-

ing perha t s 100 tons entered the atmosphere above the
Sikhote-A in region of Siberia (Russia), broke up in mid-

flight, and showered the region below with thousands of

chunks ofr total (Krinov, 1966, Chapter 4). Because the origi-
nal object _roke up in the atmosphere, the resulting smaller

fragments ,eere slowed down and produced no major dam-

age on im]_act. The kinetic energy of the original object,

equivalent to about 4000 tons [4 kilotons (kT)] of TNT,

was dissipa :ed harmlessly in the atmosphere and by the low-

velocity im 9acts on the ground.

In 1972 an object about 10 m across skimmed through

the atmosl: here above the western United States, leaving a

bright trail hat was seen and photographed, before it bounced

out into sp; ce again. Had it struck Earth's surface instead, it

would bay.: released energy equivalent to that of several

atomic bon bs, sufficient to destroy a large city (Weaver, 1986,

pp. 416-417; Morrison, 1992, p. 7).

In 1908 an even larger object, perhaps 30-50 m across,
exploded in the sky,above the Tunguska River of Siberia (Rus-

sia), produc ng an air blast that was detected around the world
and flatten,'.d about 2000 krn 2 of forest (an area more than

half the si_ e of Rhode Island) (Krinov, 1966, Chapter 3;

Chyba et al, 1993). The energy released was equivalent to

about 15 m ilion tons [15 megatons (MT)] of TNT. Fortu-

nately, even this large object was broken up by pressure waves

generated ( uring its passage through the atmosphere, and

its kinetic _nergy was released as a huge explosion several

kilometers tbove the ground. If the object had survived to

strike the gr )und intact, it would have produced a crater about

1 km in dial neter [about the size of Barringer Meteor Crater
(Arizona)] and devastated much of the surrounding coun-

tryside (Kr: ng, 1997). (The timing of the Tunguska event
was also for .-unate. If the object had entered the atmosphere

only a few aours later, the blast would have occurred over

the city of { t. Petersburg, Russia, and would probably have

destroyed tl Lecit):)

Earth's .,ituation in space, together with the observed

record ofth, '.present and recent past, demonstrates that there

is nothing t nusual or nonuniformitarian about extraterres-

trial impact ;, even large ones. In fact, impacts are like other

uniformitar an processes such as earthquakes and volcanic

eruptions: 1here are lots of small ones and relatively few large

ones. The s nail ones occur frequently, cause little damage,

and tend to be ignored. The larger ones are much rarer, but

they are the ones that do all the damage.

2.3. THE PROBLEMS OF PREDICTION:

HOW BIG, HOW OFTEN?

2.3.1. Ingredients of Catastrophe

Collisions of large extraterrestrial bodies with Earth are

rare, but they are far more destructive than the impacts of
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smaller objects. Larger and heavier objects not only possess

more kinetic energy than smaller ones, but they are also less

affected by Earth's atmosphere. They are not slowed down,

they survive intact to the ground, and their entire original

kinetic energy is delivered to Earth's surface. Objects no more

than a few tens of meters across may be massive enough

(and coherent enough, especially if they are iron meteorites)

to pass through the atmosphere without being slowed and

to strike the ground at their original cosmic velocities.

Typical cosmic velocities are high. The minimum impact

velocity for collisions with Earth is 11.2 km/s; this is, by

definition, equal to the escape velocity for an object launched

into space from Earth's surface. The maximum possible im-

pact velocity onto Earth is the sum of two separate veloci-
ties: (1) The velocity of the impacting object in its orbit

around the Sun (heliocentric velocity). This quantity, which

can also be thought of as the escape velocity from the solar

system, is about 42 km/s at the orbit of Earth. (2) The or-

bital velocity of Earth itself around the Sun, which is about
30 km/s. The maximum possible impact velocity on Earth

is the simple sum of these two velocities, or 72 km/s. How-

ever, the orbits of Earth and the colliding object will gener-

ally be inclined to one another; the two velocities will

therefore add geometrically (as a vector sum), producing

Earth-encounter velocities (geocentric velocities) between these

two limits. Typical Earth-encounter velocities for asteroids

are 15-25 km/s (Chyba et al., 1994). Comets tend to have

higher encounter velocities, e.g., as much as 60 km/s for

Comet Halley. At such speeds, these objects carry as much

kinetic energy as 20-50× their weight in TNT, and all this

energy is released when they strike the Earth.

Because impact velocities are high, the kinetic energy
(= 1/2 mv 2) of even small objects is also high. A stony mete-

orite only 6 m in diameter, colliding with the Earth at
20 km/s, releases as much energy [8.3 x 1013 joules (J) or

20,000 tons (20 kT) of TNT] as an atomic bomb (see

Table 2.1). The impact of a larger object, such as a moder-

ate-sized comet or asteroid only a few kilometers across, re-

leases in seconds amounts of energy measured in millions or
even billions of MT (1 MT = 106 tons of TNT or 4.2 ×

1015 J). For comparison, the total energy released by the

Earth, through volcanism, earthquakes, and heat flow, is

about 1.3 × 1021J/yr, or about 310,000 MT/yr (Fowler, 1993,

p. 226). A collision with a modest-sized asteroid thus
releases in a few seconds more energy than the entire Earth

releases in hundreds or thousands of years. Fortunately for

terrestrial life and civilization, these larger catastrophes are

rare, even over geological timescales of millions of years.

2.3.2. Uncertain Estimates

But just how rare is "rare"? How often is an impact crater

of a given size produced on Earth? How often will bodies of

a given size collide with Earth in the future? Scientists at-

tempting to solve these problems for Earth (or any other

planet) are faced with three complex and interrelated ques-
tions: (1) How often will an extraterrestrial object of a given

size strike Earth? (2) How much energy (determined by the

object's mass and impact velocity) will be released by the

event? (3) How large a crater will be formed by this amount

of energy?
Attempting to answer these questions causes major diffi-

culties. Impact is a random process, not a regular one, and it

is difficult to make a precise statistical estimate from only a

small number of recorded events. The preserved terrestrial

crater population is small; worse, it is biased toward younger

and larger structures because of erosion and other postim-

pact processes. Better statistics are available from the more

well-preserved lunar and planetary cratering records, but to

apply this information to Earth requires corrections for dif-

ferent planetary gravity fields, target characteristics, and

the variation of impact rates at different locations within the

solar system. Final]); calculations of crater sizes depend on a

large number of complicated factors: projectile characteris-

tics (mass, density, physical properties, impact velocity,

impact angle), target characteristics (structure, physical prop-

erties), the partitioning of the projectile's original kinetic

energy into various forms (mechanical, kinetic, seismic, ther-
mal) within the target, and the relationships between im-

pact energy and crater size for various projectiles, targets,

and impact velocities.
Efforts to determine impact frequencies date back to be-

fore the Apollo program and the planetary missions of the

last few decades, and, despite the difficulties, much progress

has been made. Many workers have used a large range of

different astronomical and planetary data: the present mea-

sured impact rate of small bodies on the Earth; the number
and sizes of known asteroids and comets; and the number

and size of impact craters observed on the better-preserved

surfaces of other planets, particularly the Moon, Mars, and

(more recently) Venus (for reviews and different examples,

see Taylor, 1982, Chapter 3; 1992, Chapter 4; HOrz et al.,

1991; papers in Gehrels, 1994). Other scientists have calcu-
lated terrestrial bombardment rates from the small but grow-

ing population of preserved terrestrial craters (Grieve, 1991;
Grieve and Shoemake*; 1994; Grieve and Pesonen, 1992,

1996; Shoemaker and Shoemaker, 1996). The various theo-

retical problems of energy partitioning and crater size have
been extensively addressed in numerous theoretical and

laboratory studies (e.g., O'Keefe andAhrens, 1975, 1977,

1993; Ahrens and O'Keefe, 1977; papers in Roddy et al.,

1977; Holsapple and Schmidt, 1982, 1987; for reviews and

literature, see also Melosh, 1989, Chapter 7).

Even with the large amount of observational, theoretical,

and laboratory data now available, the uncertainties in such

estimates remain large. Individual estimates of the frequency

of impact on Earth for objects of the same size vary by fac-

tors of 5-10x, especially for larger objects. (Compare, e.g.,
the various estimates of Bottke et al., 1994; Neukum and

Ivanov, 1994; Grieve and Shoemaker, 1994.) The material

in Table 2.1 presents approximate estimates of terrestrial

impact frequencies, energies, and resulting crater sizes. These

data represent a combination of various current estimates,

but they are only approximate and should be used only for

general illustration. The uncertainties, in both the databases
and the mathematical models used, are still too great to

allow more precise estimates.
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Geologically based estimates for the terrestrial impact rate

have been obtained from the number of large (D -_20 kin)

impact structures identified in stable, well-preserved regions
of Earth (Grieve, 1991; Grieve and Shoemaker, 1994; Shoe-

maker and Shoemaker. 1996]. This value, (5.6 + 2.8) x 10 -15

craters/km2/yr, is comparable with that deduced from astro-

nomical data (chiefly from crater counts on the Moon's sur-

face), although the stated 50% uncertainty is probably a
minimum value. This rate implies that, over the whole Earth,

a few (perhaps 1-5) craters of this size (D _-20 km) should

be produced every million years or so by the impact of

projectiles -_1-2 km in diameter. In these models, the aver-

age impact frequency varies approximately with the inverse

square of the crater diameter, implying that about 10 craters
of diameter -_10 km should form in the same million-

)rear period, while a crater ->100 km in diameter should be

formed every 10 m.): or so. Other models for impact fie-

quencies (e.g., Neukum amt h,anov, 1994) yield numbers

of craters that are lower by factors of 5-10, especially for
larger structures.

Nevertheless, these estimates are useful approximations,

and they demonstrate that even very large impacts are not

an unusual phenomenon when one thinks in terms of geo-
logical periods of time.

2.3.3. An Uncertain Future?

The frequency with which extraterrestrial objects collide

with Earth, and the sizes of craters produced by the colli-

sions, are not just interesting scientific problems. They are

matters for serious concern about the future of our society,

perhaps even of our species. We know that extraterrestrial

bodies collide with Earth today, we have demonstrated that

they have collided with it in the past, and we must face the
fact that they will continue to collide with it in the future.

It is not a question of whether such collisions will occur;

the only qt estions are when, how big, and what the effects
will be.

The ha2 ards of such future collisions have been discussed

in detail e;sewhere (Chapman and Morrison, 1989, 1994;

Morrison, : 992; Gehrels, 1994; Verschuur, 1996). Large im-

pact events are rare, but they cannot be ignored just for that

reason. Su(h events are unpredictable and might happen at
any morner t. The impact of an object only 50 m across, form-

ing a crate'only a kilometers in diameter [e.g., Barringer
Meteor Cr: .ter (Arizona)], would totally devastate an area of

several tho _sand square kilometers around the impact site

(Kring, 1% 7). The probability of a larger event, sufficient to

cripple or l,ossibly destroy our current interconnected and

technology-dependent civilization, although small, is very

real (Chap_ !an andMorrisan, 1994), and we do not yet know

enough to, valuate the danger.

Althou_ h much of the concern for assessing and remov-

ing impact aazards lies in other areas, particularly social and

political, th e scientific study of impact events can play a cru-

cial role in mderstanding and possibly preventing the cata-

strophic da_ nage that would be caused by a large impact event

in the futu: e. The geological structures left by past impact

events can _ive us information about the frequency of large
impact ever ts, the sizes of the projectiles, the energy released,

and the en fironmental damage produced over regional or
global dista aces. At the same time, continued observation of

the solar sys tern can inventory the existing population of near-

Earth asterc ,ids and comets and can help estimate the chances
of future c( llisions. With such data, the threat from extra-

terrestrial _bjects can be better evaluated, and people and

governmen :s can determine what -- if anything -- can be
done to ave ida catastrophic disaster in the future.



Formation of Impact Craters

The processes by which large impact craters form, and

the sudden releases of huge quantities of energy involved,

cannot be duplicated in the laboratory, and, fortunately, no

such structure has formed during recorded human history.

All our knowledge about large impact structures is therefore
indirect, and it has come from combining several areas of

once-separate research: theoretical and experimental stud-
ies of shock waves (for reviews and literature, see Melosh,

1989), experimental production of small craters (e.g., Gault

et al., 1968; Gault, 1973; Holsapple and Schmidt, 1982, 1987;

papers in Roddy etal., 1977), and geological studies of larger

terrestrial impact structures (ShoemakeT; 1963; Dence, 1968;
Dence et al., 1977; Grieve and Cintala, 1981; Grieve et al.,

1981; Schultz and Merrill, 1981; St_fjqer et al., 1988). The

cratering process is complex, many details are still uncertain,

and neither calculations nor predictions can be made with
firm confidence. But these studies provide the essential ba-

sis for understanding how impact craters form and for deci-

phering the geological features they display.

3.1. SHOCK WAVES AND

CRATER FORMATION

The general term "impact crater" is used here to desig-

nate a hypervelocity impact crater, the structure formed by

a cosmic projectile that is large enough and coherent enough

to penetrate Earth's atmosphere with little or no decelera-

tion and to strike the ground at virtually its original cosmic

velocity (>11 km/s). Such projectiles tend to be relatively

large, perhaps >50 m in diameter for a stony object and >20 m
for a more coherent iron one.

Smaller projectiles, typically a few meters or less in size,

behave differently in passing through the atmosphere. They

lose most or all of their original velocity and kinetic energy

in the atmosphere through disintegration and ablation, and

they strike the ground at speeds of no more than a few hun-

17

dred meters per second. In such a low-velocity impact, the

projectile penetrates only a short distance into the target (de-

pending on its velocity and the nature of the target mate-
rial), and the projectile's momentum excavates a pit that is

slightly larger than the projectile itself. The projectile sur-
vives, more or less intact, and much of it is found in the

bottom of the pit. Such pits, sometimes called penetration

craters or penetration funnels, are typically less than a few
tens of meters in diameter.

Examples of these features include Brenham (Kansas),

the many small pits made by the Sikhote-Min (Russia) me-

teorite shower in 1947, and the pit dug by the largest piece
of the Kirin (China) meteorite fall in 1976. The process of

excavation is strictly a mechanical one, and high-pressure

shock waves are not produced.

In sharp contrast, a hypervelocity impact crater starts to

form at the instant that an extraterrestrial object strikes the

ground surface at its original cosmic velocity. These impact

velocities are much greater than the speed of sound in the

target rocks, and the crater is produced by intense shock

waves that are generated at the point of impact and radiate

outward through the target rocks. Shock waves are intense,

transient, high-pressure stress waves that are not produced

by ordinary geological processes (for details, see Melosh, 1989,

Chapter 3 and references therein). Peak shock pressures pro-

duced at typical cosmic encounter velocities may reach sev-
eral hundred GPa. These pressure are far above the stress

levels (-1 GPa) at which terrestrial rocks undergo normal

elastic and plastic deformation, and the shock waves pro-

duce unique and permanent deformation effects in the rocks

through which they pass.

The shock waves radiate from the impact point at high

velocities that may exceed 10 km/s, much greater than the

speed of sound in the target rocks. As they expand, they in-

teract with the original ground surface to set a large volume

of the target rock into motion, thus excavating the impact
crater. The formation of an impact crater by shock waves,
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and the immediate modification of the newly fbrmed crater

by gravity and rock mechanics, is a complex and continuous

process. However, it is convenient to divide this process,

somewhat arbitrarily, into three distinct stages, each domi-

nated by different forces and mechanisms: contact and com-

pression, excavation, and modification (Gault et al., 1968;

see also Melosb, 1989, Chapters 4, 5, and 8).

3.1.1. Contact/Compression Stage

This stage begins at the instant that the leading edge of

the moving projectile makes contact with the ground sur-

face. If the target is solid rock, the projectile is stopped in a

fraction of a second and penetrates no more than 1-2× its

own diameter (Fig. 3.1) befi)re its immense kinetic energy is

transferred to the target rocks by shock waves generated at

the interface between projcctile and target (Kiefl'er and

Simom& 1980; O'Ke_'/bamtAhrens, 1982,1993;Melosh, 1989,

Chapter 4).

The general features of this conversion of kinetic energy

into shock waves have been determined from experiments

and theoretical studies (e.g., O'KeefeamtAhrens, 1975, 1977,

1993;AhrensandO'Keefe, 1977; papers in Roddyetal., 1977;

Melosh, 1989, Chapter 4), although man)' details are still not

0 50 km
I I

lOO

Fig. 3.1. Contact/compression stage: shock-wave generation

and projectile deformation. Theoretical cross-section showing

calculatcd conditions immediately after the impact of a large,

originally spherical, projectile (stippled) onto a uniform target. The

projectile has penetrated about half its diameter into the target,

and intense shock waves (pressures in GPa) are radiating outward

into the target from the interface. The projectile itself has become

intensely compressed, and similar shock waves from the interface

are spreading toward the rear of the projectile. \Vhen this shock

wave reaches the rear of the projectile, it will be reflected forward

as a tensional wave or rarefaction, unloading the projectile and

allowing it to translbrm, virtually instantaneously, into melt and

vapor. The original model, developed for large hmar impact events

(O'K,,q/e amtAhrens, 1975), represents conditions about 1 s after

the impact of a 46-kin-diameter anorthosite projectile at 15 km/s

onto a gabbroic anorthosite target, but similar conditions will be

produced by smaller impacts and other material compositions.

(Modified from Me/osh, 1989, Fig. 4.1a, p. 47.)

well understood. One clear result is that, as one set of shock

waves is tra _smitted outward from the interface into the tar-

get rocks, a =omplementary shock wave is reflected back into

the project le (Fig. 3.1) (Melosh, 1989, Chapter 4; O'Keefe

anddhrens, 1993).

The sh(ck waves transmitted into the target rocks lose

energy rap dly as they travel away from the impact point.

Two facton are involved in this energy loss: (1) the expand-

ing shock t :ont covers an increasingly larger hemispherical

area with ir creasing radial distance, thus reducing the over-

all energy c ensity; (2) additional energy is lost to the target

rocks throt gh heating, deformation, and acceleration. The

peak presst res of the shock waves therefore also drop rap-

idly with di stance from the impact point. Theoretical mod-

els (MelosJ., 1989, pp. 60-66) and geological studies of

shock-metl morphosed rocks in individual structures (Dence,

1968; Robe tson, 1975; Grieve and Robertson, 1976; Dence et

al., 1977; t:obertson and Grieve, 1977; Dressier et al., 1998)

indicate thl t the peak shock-wave pressure (P_) drops expo-

nentially' w th the distance R from the impact point accord-

ing to an e, tuation of the form P_ 0t R -_. Various field and

laboratory =tudies indicate a dependence of R -2 to R-4.s; the

exact value of the exponent depends on projectile size and

impact vel< city (dhrens and O'Keefe, 1977).

On the basis of these studies, it is possible to regard the

impact poir t as surrounded by a series of concentric, roughly

hemispherizal shock zones, each zone distinguished by a

certain ran I ;e of peak shock pressure (Fig. 3.2) and charac-

terized by a unique suite of shock-metamorphic effects pro-

duced in tf e rocks. At the impact point, peak shock-wave

pressures rray exceed 100 GPa (= 1000 kbar or 1 Mbar) for

typical cosr tic encounter velocities, producing total melting,

if not vapo ization, of the projectile and a large volume of

surroundin _ target rock. Further outward, pressures of 10-

50 GPa m." y exist over distances of many kilometers from

the impact point, producing distinctive shock-deformation

effects in la :ge volumes of unmelted target rock.

At even greater distances from the impact point, the peak

shock-way, pressures eventually drop to about 1-2 GPa

(Kieff'erana Simonds, 1980). At this point, near the eventual

crater rim, he shock waves become regular elastic waves or

seismic wax es, and their velocity drops to that of the veloci .ty

of sound in the target rocks (typically 5-8 kin/s). These seis-

mic waves _an be transmitted throughout the entire Earth,

like similar waves generated by earthquakes and volcanic

eruptions. ]_ecause of their low pressures, they do not pro-

duce any pe "manent deformation of the rocks through which

the), pass. t lowever, seismic waves may produce fracturing,

brecciation faulting, and (near the surface) landslides, and

the results i aay be difficult to distinguish from those of nor-

real geologi cal processes.

The dur ttion of the contact/compression stage is deter-

mined by the behavior of the shock wave that was reflected

back into the projectile from the projectile/target interface

(Fig. 3.1) (_ delosh, 1989, pp. 57-59). When this shock wave

reaches the back end of the projectile, it is reflected forward

into the pr,@ctile as a rarefaction or tensional wave (also
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Fig. 3.2. Contact/compression stage: initial shock-wave pressures and excavation flow lines around impact point. Schematic cross-
section showing peak shock pressure isobars (pressures in GPa) developed in the target around the impact point near the end of the
contact/compression stage• The originally spherical projectile, after penetrating about two diameters into the target, has been almost
completely destroyed and converted to melt and vapor. Shock waves radiating from the projectile-target interface decline rapidly outward
in peak pressure (isobars in GPa on left side of cavity), creating concentric, approximately hemispherical zones of distinctive shock effects
(right side ofcavi@. From the original interface outward, these zones involve: (1) melting (>50 GPa) and formation of a large melt unit;
(2) shock-deformation effects (5-50 GPa); (3) fracturing and brecciation (1-5 GPa). The subsequent excavation stage involves two
processes: (1) upward ejection (spalling) of large near-surface fragments and smaller ejecta (ejecta curtain) (upward-pointing arrows
above ground surface); (2) subsurface flow of target material to form the transient crater (arrow paths crossing isobars at left side).
(Modified from Me/osh, 1989, Fig. 5.4, p. 64.)

called a release wave). As the release wave passes through

the projectile from back to front, it unloads the projectile

from the high shock pressures it had experienced. Because

the shock pressures, and the associated temperatures, have

been so high, this release results in the virtually complete

melting and vaporization of the projectile. At the instant at

which the release wave reaches the front end of the projec-
tile, the whole projectile is unloaded, and the release wave

continues forward into the target and begins to decompress

it as well. This point, at which the release wave reaches the

front of the projectile and begins to enter the adjacent com-

pressed target, is taken as the end of the complete contact/

compression stage.

The contact/compression stage lasts no more than a few

seconds, even for impacts of very large objects. The time

required for the shock wave to travel from the projectile/

target interface to the rear edge of the projectile is approxi-

mately equal to the time it takes the projectile to travel the

distance of one diameter at its original velocity. Even for

large projectiles, this time is short: 2 s for a 50-km-diam-

eter projectile traveling at 25 km/s, and less than 0.01 s tbr a
100-m-diameter object traveling at the same speed. The

additional time required ti)r the release wave to travel from

the rear to the front edge will be no more than a few times

this value, depending on the properties of projectile and tar-

get rock (Melosh, 1989, pp. 48 and 58). For most impact

events, the entire contact/compression stage is over in less
than a second.

After the release wave has reached the front end of the

projectile and unloaded it completely, the projectile itself plays

no further role in the formation of the impact crater, and the

actual excavation of the crater is carried out by the shock

waves expanding through the target rocks. The vaporized

portion of the projectile may expand out of the crater as part
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of a vapor plume (Melosh, 1989, pp. 68-71), and the remain-

der, virtually all melted, may be violently mixed into the

melted and brecciated target rocks.

3.1.2. Excavation Stage: The Transient Crater

The brief contact/compression stage grades immediately

into a longer excavation stage, during which the actual im-

pact crater is opened up by complex interactions between

the expanding shock waves and the original ground surface

(Fig. 3.3) (Melosh, 1989, Chapter 5; Grieve, 1991). As the

contact/compression stage ends, the projectile is surrounded

by a roughly hemispherical envelope of shock waves that

expand rapidly through the target rock. Because the projec-

tile has penetrated a finite distance into the target, the cen-

ter of this hemisphere actually lies within the original target

rock at a point below the original ground surface.
Within this hemispherical envelope, the shockwaves that

travel upward and intersect the original ground surface are
reflected downward as rarefactions (release waves). In a near-

surface region where the stresses in the tensional release

wave exceed the mechanical strength of the target rocks,

the release wave is accompanied by fracturing and shatter-

ing of the target rock (Fig. 3.2). This reflection process also

converts some of the initial shock-wave energy to kinetic

energy; and the rock involved is accelerated outward, much
of it as individual fragments traveling at high velocities

(Fig. 3.4).

These complex processes drive the target rock outward

from the impact point, producing a symmetric excavation

flow around the center of the developing structure. Exact

flow directions vary with location within the target rocks

(Fig. 3.4). In the upper levels, target material moves domi-

nantly upward and outward. At lower levels, target material

moves dominantly downward and outward. These move-

ments quickly, produce a bowl-shaped depression (the tran-

sient cavity or transient crater) in the target rocks (Maxwell,
1977; Grieve at al.. 1977; Grieve and Cinmla, 1981; Melosh,

1989, pp. 74-78).

The transient crater is divided into approximately equal

upper and lower zones (Figs. 3.4 and 3.5). Within the upper

ejection zone, velocities imparted to the target rocks may be

as high as several kilometers per second, high enough to ex-

cavate the fragmented material and to eject it beyond the
rim of the final crater (Grieve et al., 1977; Dence et al., 1977;

Kieffer ana Simonds, 1980; Melosh, 1989, pp. 74-76). Even

at significa at distances from the impact point, shock pres-

sures and tte resulting ejection velocities remain high enough

(>100 m/s) to eject material. For this reason, the diameter of

the final cr: tter is many times larger (typically 20-30x) than

the diamet,:r of the projectile itself.

At deeper levels, tensional stresses in the release waves

are lower, f _sa result, fracturing is less pronounced, excava-
tion flow v, '.locities are lower, and the excavation flow lines

themselves are not oriented to eject material beyond the cra-

ter rim (Fig. 3.4). This region forms a displaced zone in
which mat,:rial is driven downward and outward more or

less cohere, _fly.

Both zo nes in the transient crater continue to expand,

accompanicd by the uplift of near-surface rocks to form the

transient clater rim, as long as the expanding shock waves

and release a_aves are strong enough to eject or displace ma-

terial from 1he developing cavity. However, these waves con-

tinually lose energy by deforming and ejecting the target rocks

through wLich they pass. Eventually, a point is reached at

which the shock and release waves can no longer excavate or

displace target rock. At that point the growth of the tran-
sient crater .-eases. There is an instant of theoretical balance

in which th _ energies of the shock wave no longer act, and

the waiting forces of gravity and rock mechanics have not

yet reassem d themselves. At this instant, the transient cra-

ter reaches ts maximum extent, the excavation stage ends,

and the sub ;equent modification stage begins immediately.

The excl vation stage, although longer than the contact/

compressiol_ stage, is still brief by geological standards. If

the near-sut face excavation flow has a minimum average ve-

locity of 1 Ira/s, then a 200-kin-diameter transient crater
can be exca,ated in less than 2 min. More detailed calcula-

tions (Melo. h, 1989, p. 123) indicate that excavation of a

1-km-diame ter crater (e.g., Barringer Meteor Crater [Ari-
zona]) will ._ccur in about 6 s, while a 200-km-diameter

crater requi, es only about 90 s.

The con, ept of the transient crater has been developed
from a combination of theoretical studies (Melosh, 1989,

Chapter 5) a ad geological investigations (Dence, 1968; Grieve
and Cintala, 1981; Grieve et al., 1981). The ideal transient

crater is a b _wl-shaped depression with a structurally up-
lifted rim (iqgs. 3.4 and 3.5). Its shape is approximately

hemispherk al but is actually a paraboloid of revolution

Fig. 3.3. Development of a simple impact structure. Series of cross-section diag rams showing progressive development of a small,
bowl-shaped simple impact structure in a horizontally' layered target: (a) contact/, ompression stage: initial penetration of projectile,
outward radiation of shock waves; (by start of excavation stage: continued expansion of shock wave into target; development of tensional
wave (rarefaction or release wave) behind shock wave as the near-surface part ofori_ inal shock wave is reflected downward from ground
surface; interaction of rarefaction wave with ground surface to accelerate near-suface material upward and outward; (c) middle of
excavation stage: continued expansion of shock wave and rarefaction wave; develo l,ment of melt lining in expanding transient cavity;
well-developed outward ejecta flow (ejecta curtain) from the opening crater; (d) end ot excavation stage: transient cavity reaches maximum
extent to form melt-lined transient crater; near-surface ejecta curtain reaches maxim am extent, and uplifted crater rim develops; (e) start
of modification stage: oversteepened walls of transient crater collapse back into _:avity,accompanied by near-crater ejecta, to form
deposit of mLxed breccia (breccia lens) within crater; (f) final simple crater: a bm rl-shaped depression, partially filled with complex
breccias and bodies of impact melt. Times involved are a few seconds to form the tr ,nsient crater (a)-(d), and minutes to hours for the
final crater (e)-(f). Subsequent changes reflect the normal geological processes of e:osion and infilling.
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Fig. 3.4. Excavation stage: formation of transient crater. Theoretical cross s,'.ction showing development of the transient crater

immediately after the contact/compression stage. Original peak shock pressures ( mits in GPa) around the impact point are shown for

simplicity as hemispherical isobars (for details, see Fig. 3.2). Complex interacti)ns of the shock wave, the ground surface, and the

subsequent rarefaction wave produce an outward excavation flow (dashed arrows) •hat opens up the transient crater. In the upper part of

this region (excavated zone; ruled area), target material is fractured, excavated, an( ejected beyond the transient crater rim. In the lower

region (displaced zone), target material is driven downward and outward, more o: less coherently, and does not reach the surface. This

model yields two important geological results: (1) ejected material is derived only :rom the upper part (approximately the top one-third

to one-half) of the transient cavity; (2) because the excavation flow lines in the exca 1ated zone cut across the initially hemispherical shock

isobars, ejected material will reflect a wide range of original shock pressures and d ._formation effects, ranging from simple fracturing to

complete melting and vaporization. (Modified from Grieve, 1987, Fig. 5; H_rz et 1l., 1991, Fig. 4.3a, p. 67.)

Impact site

Hexc T

Hat

2

Fig. 3.5. Transient crater: locations of shock-metamorphosed materials. Cross section through a theoretical transient crater, showing

discrete zones from which various shock-metamorphosed materials are derived. T} e "vaporized" zone closest to the original impact point

(stippled) contains a mixture of vaporized target rock and projectile, which expancs upward and outward into the atmosphere as a vapor

plume. The adjacent "melt" zone (solid black) consists of melt that moves dowuward and then outward along the floor of the final

transient cavity (for details, see Fig. 6.2). Material in the upper"ejected" zones on tither side of the melt zone, which contains a range of

shock-metamorphic effects, is ejected outward to and beyond the transient crater _im. The lower "displaced" zone moves downward and

outward to form the zone ofparautochthonous rocks below the floor of the final transient crater. H,t = the final transient crater depth;

Hex c = the depth of excavation, which is significantly less than the total depth. (F_om Melosh, 1989, Fig. 5.13, p. 78.)



(Dence, 1973). Its maximum depth is approximately one-

third its diameter, and this proportion seems to remain

approximately constant for craters of widely different size

(Maxwell, 1977; C@ 1985).
The theoretical instant of ideal overall balance in a tran-

sient crater at the end of the excavation stage may not be

actually attained during formation of a real crater. For ex-

ample, in these models, the maximum diameter is normally

attained after the maximum depth is reached. Subsequent

modification of one part of an actual transient crater might
therefore begin while other parts are still being excavated.

Even so, the transient crater is a key concept in models of

crater formation. All impact structures, regardless of their

final size or the complexity of their subsequent development,

are assumed to pass through the transient-crater stage, mak-

ing this stage of critical importance in comparing impact

structures of different sizes or on different planets. Defining

the transient crater is also an essential step in determining

critical characteristics of an impact structure: its original

(we-erosion) diameter and depth, the energy of impact, the

size and velocity of the projectile, the distribution of shock

pressures and shock effects within the crater, the amount of

material melted and ejected during formation of the crater,

the amount of structural uplift during formation of the cen-

tral peak of complex impact structures, and the depth from
which excavated materials were derived.

3.1.3. Modification Stage
The excavation stage ends when the transient crater has

grown to its maximum size, and the subsequent modifica-

tion stage begins immediately. The expanding shock waves

have now decayed to low-pressure elastic stress waves be-

yond the crater rim, and they play no further part in the

crater development. Instead, the transient crater is immedi-

ately modified by more conventional factors like gravity and
rock mechanics.

The immediate part of the modification stage, during

which the major impact-related changes occur, lasts only

slightly longer than the excavation stage: less than a minute

for a small structure, a few minutes for a large one (Melosh,

1989, Chapter 8, pp. 141-142). (One simple definition is
that the modification stage ends "when things stop falling.")

However, the modification stage has no clearly marked end,

and the modification processes of uplift and collapse merge

gradually into the normal processes of geological mass move-

ment, isostatic uplift, erosion, and sedimentation.
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structures, modification may involve major structural

changes: uplift of the central part of the floor and major

peripheral collapse around the rim. Depending on the ex-
tent to which the transient crater is modified, three distinct

types of impact structures can be formed: simple craters,

complex craters, and multiring basins.

3.2.1. Simple Craters

The smallest impact structures occur as bowl-shaped de-

pressions (simple craters) less than a few kilometers across,

which help to preserve the shape and dimensions of the origi-

nal transient cavity (Figs. 1.1 and 3.6). In evolving to a simple
crater, the transient crater is modified only by minor col-

lapse of the steep upper walls into the crater cavity' and by

redeposition of a minor amount of ejected material in the

crater. As a result, the crater diameter may increase by as

much as 20%, but the original transient crater depth remains

largely unaffected (Fig. 3.7) (Mdosh, 1989, p. 129).

During modification, the simple crater is immediately

filled, to perhaps half its original depth, by a mixture of re-

deposited (fallback) ejecta and debris slumped in from the

walls and rim (Fig. 3.7). This crater-filling unit, variously
called the breccia lens or crater-fill breccia, is a mixture of

rock fragments, both shocked and unshocked, together with

fragments or lenses of shock-melted rock (impact melt).

3.2. SIMPLE AND COMPLEX

IMPACT STRUCTURES

The extent to which the transient crater is altered during
the modification stage depends on its size and (to a lesser

extent) on the structure and properties of the target rock.

Small transient craters are altered chiefly by the collapse of

their upper walls, and the shape of the final crater is little

changed from that of the original transient crater. In larger

Fig. 3.6. A simple lunar impact crater. This small, well-preserved
crater (Moltke: D = 7 km) shows features _pical of simple impact
craters: a circular outline, a bowl-like shape, an uplifted rim, and
hummocky deposits ofejecta around the rim. In the relatively low
gravity of the Moon, this structure formed as a simple crater; a
terrestrial structure of the same diameter, formed under Earth's

higher gravity, would have formed as a complex crater with a central
uplift. (Apollo 10 image AS10-29-4324.)
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Fig. 3.7. Simple impact structure: locations ofimpactite types. Schematic cross section of a typical simple impact structure, showing
the simple bowl shape and the locations of various types ofimpactites in and arou ld the structure. The parautochthonous rocks below
the true crater floor are fractured and brecciated but generally show no distinctix e shock effects, except in a small zone (fine vertical
ruling) in the center of the structure. The crater is filled, to approximately half its original height, with a variety of allogenic breccias and
impact melts, which forms the crater-fill units or the breccia lens. A thinner layer of ejected material (fallout ejecta) overlies the uplifted
crater rim and surrounds the crater. This unit is easily eroded and is present only in the youngest and best-preserved structures. D = final
crater diameter, which is 10-20% greater than the diameter of the original, premo, lification transient crater; d, = true depth of the final
crater, which is approximately the depth of the original transient crater; d_ = apparent depth of the crater, or the depth from the final rim
to the top of the crater-fill units. The diagram represents the state of the final crater )efore any subsequent geological effects, e.g., erosion,
infilling. The model is based on drilling studies at Barringer Meteor Crater (Ariz 3ha) (Roddy et al., 1975; Roddv, 1978), Brent Crater
(Canada) (Dence, 1968; Grieve and Cintala, 1981), and similar structures (e.g., _ am#is et al., 1980; Gurov and Gurova, 1991). (From
Grieve, 1987, Fig. 1.)

Depending on the subsequent geological history, the breccia

lens may be eroded or may be covered and preserved by a

cap of later sedimentary fill.

3.2.2. Complex Craters
The bowl-shaped form of simple craters appears only in

relatively small structures less than a few kilometers across.

Larger impact structures (complex craters) display a differ-

ent and more complicated form, characterized by a centrally

uplifted region, a generally flat floor, and extensive inward

collapse around the rim (Figs. 1.3, 3.8, and 3.9) (Dence, 1968;
Grieve et al., 1977, 1981; Grieve, 1991). For terrestrial struc-

tures, the transition between simple and complex craters

occurs at a diameter of about 4 krn in massive crystalline

rocks, but at only about 2 km in sediments. (However, these

values apply only to Earth. The transition diameter varies
inversely with gravitational acceleration, and it is different

on different planets.) The larger impact events that form

complex craters apparently release enough energy to over-
come the fundamental strength of the target rocks over a

large volume beneath the large transient crater. As a result,

late-stage modification involves complex interactions be-

tween shock-wave effects, gravity, and the strength and struc-

ture of the target rocks, and the modification is characterized

by outward, inward, and upward movements of large vol-
umes of the subcrater rocks.

The del ails of these interactions are uncertain, but the

general res_ tit is that the original bowl-shaped transient cra-

ter is imm,:diately modified as deep-seated rocks beneath

the center c,fthe transient crater rise to form a central uplift
(Dence, 19(,8; Grieve et al., 1981). At the same time, rocks

around the periphery of the transient crater collapse down-

ward and ir ward along concentric faults to form one or more

depressed i ings (ring grabens) and a series of terraces along

the outer rr argins of the final structure (Fig. 3.10). [A simple

model of t'.m formation of a complex crater and its central
uplift is pr4 sented by the familiar slow-motion movies of a

drop of liq aid hitting a liquid surface (e.g., Melosh, 1989,

p. 148; Tay 'or, 1992, p. 168). There is the same initial cavity

formation, :he same outward and downward ejection of tar-

get materi_ l, the same upward rebound of the central cavity

floor, and I he same collapse of the periphery back into the

cavity. Hov 'ever, in impact events, these processes take place

in solid roc i and may operate over distances of tens to hun-
dreds ofkil 3meters.]

The idea that such rapid deformation and subsequent

uplift can _,ccur in large volumes of crustal rocks has been

difficult fol many geologists to appreciate. Key evidence has

come from studies of impact structures formed in sedimen-

tary rocks, in which the actual uplift of key stratigraphic
markers ha ;been established beyond question through drill-

ing and gec physical studies (e.g., Milton etal., 1972,1996a,b;
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Fig. 3.8. A complex lunar crater. This relatively young crater

(Theophilus: D = 100 kin) displays well-preserved features that

are typical of complex impact structures: a central uplift, a scalloped

circular outline, ruggedly terraced walls with possible landslide

deposits inside the rim, and hummocky ejecta deposits just out-

side the rim. This view also indicates the continuing nature of

lunar cratering; an older impact crater (upper right) has been partly

destroyed by Theophilus, while a younger small crater has formed

within Theophilus itself (near rim, lower right). The flat dark

area in the background (upper left) is made up of lava flows cover-

ing part of Mare Nectaris. The spiral-like rod at left center is an

instrument boom on the Apollo 16 spacecraft, from which this

orbital picture was taken. (Apollo 16 image AS16-M-0692.)

Fig. 3.9. A complex impact basin on Venus. A large, well-

preserved multiring impact basin on the surface of Venus

(Meitner: D = 150 km) is revealed beneath the planet's opaque

atmosphere by the imaging radar system of the Magellan space-

craft. Meitner, the third-largest impact structure identified on

Venus, shows a flat smooth (dark-colored) interior, two circular

rings, and a rough, irregular blanket of lobate ejecta (light-colored).

The crater was formed on a surface of smooth plains, possibly

underlain by' lava flows and cut by abundant parallel fractures

(white lines). (Magellan image F-MIDRP .55S319;201.)

Grieve et aL, 1981; Grieve and Pilkington, 1996). Geological

studies have also established that the amount of actual strati-

graphic uplift (SU) in impact structures is about one-tenth

the final diameter (D) of the structure. A detailed statistical

relation derived from studies of well-constrained complex

impact structures (Grieve et al., 1981, p. 44) is SU = 0.06 D 1"1

(both SU and D are in kilometers). A subsequent analysis,

using more craters (Grieve and Pilkington, 1996, p. 404),

gave SU = 0.086 Dl.°3.The two equations are virtually iden-

tical, and a value of SU = 0.1 D is a reasonable approxima-

tion to either. For large (D = 100-200 kin) impact structures,

these relations imply that the crustal rocks beneath the struc-

ture are uplifted vertically by 10-20 km during the impact

event. An uplift of this magnitude has been estimated for

the Vredefort (South Africa) structure on geological grounds

(Reimold and Gibson, 1996; Therriault et aL, 1997; Turtle and

Pierazzo, 1998).

Both theoretical and field studies indicate that central

uplifts form in only a few minutes, almost instantaneously

by geological standards, even in the largest structures (Mdosh,

1989, pp. 129 and 141-142). Theoretical studies also sug-

gest that the central uplifts of structures 200-300 km in

diameter, such as Vredefort (South Africa), formed in less

than 15 minutes (Melosh_ 1989, pp. 141-142; Turtle and

Pierazzo, 1998).

Despite the extensive evidence that central uplifts do form

in large impact structures, the details of the process are still

the subject of continuing uncertainty and active debate

(Dence, 1968; Grieve et aL, 1981; Mdosh, 1989, Chapter 8;

H&z eta/., 1991; Spudis, 1993). Even so fundamental a quan-

tity as the ratio between the diameter of the initial transient

crater and the diameter of the final complex impact struc-

ture has not been well established; values estimated by vari-

ous workers, using both theoretical and geological studies,

range from about 0.5 to 0.7 (see, e.g., Therriault etaL, 1997,

Table 2).

At larger crater diameters, the resulting structures, and

especially the centrally uplifted area, become even more com-

plicated. As the crater size increases the character of the cen-

tral uplift changes, and the single central peak is progressively

replaced by a more complex series of concentric rings and

basins. At least three types of complex impact structures can

be distinguished with increasing crater diameter: central-

peak structures, central-peak-basin structures, and peak-
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Fig. 3.10. Development of a complex impact structure. Series of cross sections s _owing progressive development of a large, complex

impact structure in a horizontally layered target: (a) formation of a large transient c: ater by the excavation process is virtually identical to

transient crater formation in smaller structures (compare with Fig. 3.3a-d); (b) initia development of central uplift during the subsequent

modification stage; (c) start of peripheral collapse, accompanied by continuing development of the central uplift and the thinning and

draping of the original melt layer (black) over the uplifted rocks; (d) final structure, v hich is of the central-uplift type, consists of a central

uplift of deeper rocks, surrounded by a relatively flat plain and by a terraced rim p: oduced by inward movement along stepped normal

t'aults. The central uplift is surrounded by an annular deposit of allogenic breccias an J impact melt (black), which may be absent from the

central peak itsel£ An ejecta layer (stippled) covers the target rocks around the struc:ure. The diameter of the final structure, measured at

the outer rim beyond the outermost (auk, may be 1.5-2× the diameter of the origil al transient crater. This central-peak morphology is

observed in terrestrial structures ranging from about 2-25 km in diameter; larger str actures tend to develop one or more concentric rings
within the crater (for details, see text).
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ring basin structures (Grieve at al., 1981; Melosh, 1989,

Chapter 8; Spudis, 1993). As the terms suggest, these struc-

tures are characterized by the initial development of a basin

in the central peak and eventually by the complete conver-

sion of the central peak area to a ring structure (Figs. 1.3,
3.9, and 3.11).

These distinctions, and the transition diameters at which

they occur, have been most clearly established on airless bod-
ies like the Moon, where even large ancient structures have

been well preserved (Figs. 3.6, 3.8, and 3.11) (e.g., Taylor,
1982, 1992; Melosh, 1989, pp. 131-135; Spudis, 1993). Clas-

sification of large terrestrial structures (e.g., papers in Schultz

and Merrill, 1981; SDudis, 1993, pp. 24-41) is more difficult
and uncertain, because the impact structures, especially their

critical upper parts, tend to be removed by erosion or buried

by later sediments. Furthermore, the critical diameters at
which one form changes to another depend inversely on the

planetary gravity, making it difficult to apply data from struc-

tures on other planets to terrestrial features. For example,

the transition between simple and complex craters occurs at

about 20 km diameter on the Moon but at only 2-4 km on

Fig. 3.11. A lunar impact basin. This large impact structure
(Scbr6dinger: D = 320 kin) is located on the lunar farside near
the Moon's South Pole. Although ancient and highly degraded,
it still preserves features distinctive of larger complex impact
structures: a central uplift and terraced walls. However, in this
large structure, the central uplift appears as an interior peak ring
about 150 km in diameter (arrows), in sharp contrast to the simpler

central peak formed in smaller complex structures. (Lunar Orbiter
image LO-IV-8M.)

Earth. The subsequent transition between a central-peak-

basin structure to a peak-ring structure occurs at about 150-

200 km on the Moon, but at only about 20-25 km on Earth.

Despite the various difficulties, it has been possible to
establish rough boundaries for different types of terrestrial

complex structures (Grieve et al., 1981, p. 42, Fig. 2). These

limits, and some typical examples, are: central-peak struc-

tures (D = 4-22 km) [Steinheim (Germany), Sierra Madera

(Texas)]; central-peak-basin structures (D = 22-30 kin)

[Mistastin (Canada)]; peak-ring-basin structures (D = 30-
62 km) [West Clearwater (Canada); Fig. 1.3]. These values

are only approximations, and they will almost certainly change
as more structures are studied in detail and as the formation

of complex craters is better understood.

3.2.3. Multiring Basins

The largest planetary impact structures so far identified
have diameters of a few hundred kilometers to more than

1000 km (e.g., papers in Schultz and Merrill, 1981; Melosh,

1989, Chapter 9; Spudis, 1993). In contrast to smaller im-

pact structures, they appear as huge geological bulls-eyes,

composed of multiple concentric uplifted rings and inter-
vening down-faulted valleys (ring grabens) (Fig. 3.12). These

features, designated multiring basins, are defined as struc-

tures that have two or more interior rings in addition to the
outer rim of the structure.

Multiring impact basins have been produced by the im-

pact of projectiles tens to hundreds of kilometers in diam-

eter, and they date mainly from an early period in the solar

system ( ->3.9 Ga), when such large objects were more abun-
dant and collisions were more frequent. The best multiring

basins are best observed on planets with well-preserved an-

cient surfaces, such as the Moon, Mercury, parts of Mars,

and some of the moons of Jupiter. Mare Orientale, on the

Moon, with a diameter of at least 900 kin, is one of the most

prominent and best-known multiring basins (Fig. 3.12),
but even larger features exist, such as the Valhalla Basin

(D ~4000 kin) on Jupiter's icy moon Callisto. In addition,

there are numerous large basins in the solar system that

do not display a pronounced multiring structure, possibly

because they have been deeply eroded since they formed.
These include the Caloris Basin (Mercury; D = 1300 kln),

the Argyre Basin (Mars; D > 900 krn) (Fig. 1.9), and the

recently identified South Pole-Aitken Basin on the Moon
(D ~2500 km).

On the Moon, the transition to multiring basins occurs
at diameters of about 400-600 km. Because the transition

diameters for different crater forms vary inversely with plan-

etary gravity, this observation implies that multiring basins
should begin to form on Earth at crater diameters greater
than about 100 km. Because the few terrestrial impact struc-

tures in this size range have been deeply eroded or buried

(e.g., Fig. 1.4), it has not yet been possible to demonstrate

clearly that any multiring basins exist on the Earth. The

few possible candidates (and their current estimated diam-

eters) are Manicouagan (Canada, 100 km), Popigai (Russia,
100 kin), Vredefort (South Africa, >200 km), Sudbury
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even more 1mcertain and hotly debated than is the origin of

smaller complex impact structures (e.g., papers in Schultz

andMerril¢ 1981; Melosh, 1989, Chapter 9; Spudis, 1993).
For exar aple, it is not clear whether the transition be-

tween smalLer impact structures and multiring basins is a
natural devc lopment with increasing crater diameter (Herrick

et al., 1997, or whether multiring basins only form when

special cone itions are present within the target, e.g., a crust-

mantle stru :ture with a weak layer (asthenosphere) at depth
within the t,lanet (see Melosh, 1989, pp. 176-180). Nor is it

understood why some planetary features in the 1000-2000-

km-diameter range have a pronounced multiring form

(Fig. 3.12),nd others do not (Fig. 1.9). Finally, it is not yet

established eehether multiring impact structures -- ancient

or modern -- do exist on Earth and which large structures
they may bc.

3.3. _UBSEQ.UENT DEVELOPMENT OF
IMPACT STRUCTURES

Fig. 3.12. A lunar multiring impact basin. One of the largest,
freshest, youngest, and best-known multiring impact basins in the
solar system, Mare Orientale (D = 930 kin) lies on the boundary
between the Earth-facing lunar nearside (right) and the lunar

tarside. The structure, formed at about 3.8 Ga, is bounded by an
outer ring about 930 kan in diameter (Cordillera Mountains), and
inner rings with diameters of 620, 480, and 320 km can be

distinguished. Mare Orientale is surrounded by radial features
(especially, at lower right) that may have been produced by the
low-angle ejection of large blocks of excavated material. The

postimpact history, of the structure is also complex, and much of
the area inside the rings has been modified by later volcanic activit):
The flat dark areas at upper right are the younger lava flows that
cover Oceanus Procellamm. (Lunar Orbiter image LO-IV-187M.)

(Canada, >200 km), and Chicxulub (Mexico, >180 km). It

has not proved possible to establish beyond question the
multiring character of these structures for various reasons,

including deep erosion, postcrater deformation, or insuffi-

cient geological study. The strongest current candidate for a

terrestrial multiring structure is Chicxulub, which, although
buried, appears well preserved (Sharpton eta,(, 1993, 1996b;

Morgan et aL, 1997).

Multiring basins represent the most energetic and cata-

strophic impact events in the solar system, and the post-

impact movements -- upward, downward, and inward -- of

the target rock that modify the transient crater are far more

complex and widespread than in smaller structures. It is there-

fore not surprising that the formation ofmultiring basins is

When tl_e crater formation process ends, the resulting
circular sm cture, whether simple or complex, consists of

deformed st bcrater rocks covered by an ejeeta blanket out-

side the cra" er and with crater-fill deposits (usually a mix-

ture ofbrecc as and bodies of impact melt) within it (Figs. 3.7

and 3.13). _I his assemblage of distinctive near-surface rocks

is immedia :ely subject to more normal geological pro-
cesses: eros on, burial, and tectonic deformation. If the cra-

ter forms o a land and remains exposed after formation,

erosion will quickly remove the surface ejecta blanket and
destroy any, urviving meteorite fragments. At the same time,

however, a 1;&e may form in the crater depression, covering

the crater-fi [1material with a preserving cap of sediments,
e.g., as at B: ent (Canada) (Dence, 1968; Grieve, 1978) and

the Ries Cn ter (Germany) (yon Engelhardt, 1990).

If the ori I_inal impact site is covered by water, the forma-

tion and sut sequent history of the resulting crater may be

more compl, 'x. At the moment of impact, the overlying layer
of water will be excavated with the underlying bedrock, and

the developt aent of the crater and the deposition of the im-

pact-produc .'d rock units will be modified by the immediate
and violent tesurge of this displaced water back into the cra-

ter cavity (7 berriault and Lindstro'm, 1995; Lindstro'm et al.,

1996). If th : crater remains below the water level, it will

immediately begin to fill with sediments, and its subsequent
history will _.epend on whether it remains below water level

(continuous sediment filling) or is uplifted at some future

time (begim ing of erosion). A number of such submarine

impact struc ures have now been recognized; some have sub-

sequently be en raised above sea level [e.g., Lockne (Swe-

den) (Therrk ult and Lindstrom, 1995; Lindstro'm et al., 1996)]

and others still remain buried [e.g., Montagnais (Canada)

(Jansa and t¥-PiDer, 1987); the Chesapeake Bay Crater

(USA) (Poag, 1996, 1997); and the recently discovered

Mjolnir structure (Norway) in the Barents Sea (DyDvik et
al., 1996)].
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Crater rim Central uplift

Impact melt sheet _ In-place brecciation

Suevite breccia _ Fractures

Lithic breccia _ Dike breccias, faults

Fig. 3.13. Complex impact structure: locations ofimpactite types. Schematic radial cross section across a complex impact structure of
the central-uplift type, from the central uplift (right) to the outer, downfaulted rim (left). (Vertical scale is exaggerated.) The subcrater
parautochthonous rocks, exposed in the central uplift, are highly fractured and brecciated and may contain distinctive shock features such
as shatter cones. These rocks may also contain widespread pseudotachylite breccias and dike-like intrusive bodies of allogenic breccias
and impact melts. Larger and thicker subhorizontal units of allogenic breccias and melts occur as an annular unit of crater-fill material
that covers the parautochthonous rocks between the central uplift and the rim. The bulk of these crater-fill deposits consist of melt-free
lithic breccias, with lesser amounts of melt-bearing suevite breccias. The melt component in the crater-fill deposits becomes more
abundant toward the center and upward, and a discrete layer of impact melt (solid black) may occur at or toward the top of the crater fill.

(Modified from StS_er eta/., 1988, Fig. 12, p. 290.)

Because impact is a near-surface process, the deforma-

tion associated with impact structures dies away rapidly

with depth. Typical impact structures are relatively shallow,

and impact-produced rocks form comparatively thin units.

The distinctive rock Fpes and shock effects in a structure
tens of kilometers in diameter may extend only a few kilo-

meters below the original ground surface. Impact structures
are therefore especially vulnerable to erosion. Initial erosion

will preferentially remove the near-surface ejecta deposits
and the distinctively shocked and melted materials they con-

tain, thus rapidly destroying the most convincing evidence

for impact. Deeper erosion over longer periods of time will

eventually produce major destructive changes in the crater.
The breccias and melt units that fill the crater, and the dis-

tinctive shocked materials they contain, together with any

protecting cap of sediments, will be reduced to small rem-

nants or completely removed. The original circular outline

will disappear. Eventually, all trace of the crater will be re-

moved except for the weakly shocked subcrater rocks. If
erosion continues long enough, the whole impact structure
will be erased.

Impact structures that are not destroyed by erosion may

be entirely filled and buried by younger sediments, so that

their detection depends on geophysical methods and drill-

ing rather than on surface field geology. About one-third of

the presently known impact structures are subsurface (Grieve,
1991, 1997; Grieve andMasaitis, 1994; Grieve et aL, 1995);

they were first discovered during geophysical explorations,

and their impact origin has been verified by the discovery of
shocked rocks in drill core samples. This group includes sev-

eral continental structures that are actual or potential petro-

leum producers [Ames (Oklahoma); Avak (Alaska); Marquez

(Texas); Red Wing Creek (North Dakota)] (Donofrio, 1997),

as well as a few submarine impact structures [e.g., Montagnais

(Canada) (Jansa andPe-Pipe,; 1987)]. Several large and rela-

tively young buried impact structures have also been identi-

fied by geophysical techniques: the 90-km-diameter

Chesapeake Bay Crater (USA) (Poag, 1996, 1997); the larger
(>180-kin diameter) Chicxulub structure (Mexico), which

is associated with the K/T event (Hildebrand et aL, 1991;

Sharpton et al., 1992; papers in Ryder et al., 1996); and the

large (->70 km?) Morokweng structure (South Africa) (Cor-
ner et aL, 1997; Koeberl et al., 1997a). Many more impact

structures remain to be found, and the evidence for their

existence may already be sitting unrecognized in existing

drill cores and geophysical records around the world.

Impact structures may also be caught up in subsequent

tectonic deformation, with vao,ing results. Horizontal com-

pression may deform the original circular shape, making study

and interpretation more difficult [as at Sudbury (Canada)].
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Tectonism can 'also break up regions of original shocked rocks

and disperse them as large discrete areas across the geo-
logical landscape [e.g., the Beaverhead (ldaho) structure

(ttargraves et al., 1990; Fiske et al., 1994)]. Sufficient tcc-

tonism and metamorphism could destroy even large impact
structures or make them totally unrecognizable.

Geologists must theretbre be prepared to recognize im-

pact structures in 'all states of preservation, from young, fresh,

well-exposed circular structures filled with distinctive shocked

breccias to )lder features in which distinctive shock effects

are scattere t, barely recognizable, or deeply buried. It is es-

sential to be able to recognize the variety of distinctive shock
effects associated with impact structures and to understand

where diffe 'ent types of shock effects may be located in the
original cra er.



Shock-Metamorphic Effects in
Rocks and Minerals

4.1. FORMATION CONDITIONS AND

GENERAL CHARACTERISTICS

The growing recognition since the 1960s of the geologi-

cal importance of meteorite impact events, and the large

number of impact structures still preserved on Earth, is largely
the result of two related discoveries: (1) The extreme physi-

cal conditions that are imposed by intense shock waves on

the rocks through which they pass produce unique, recog-
nizable, and durable shock-metamorphic effects; (2) such

shock waves are produced naturally only' by the hypervelocity

impacts of extraterrestrial objects (French, 1968a, 1990b;
French and Short, 1968). Shock-metamorphic effects (also
called "shock effects" or "shock features") have been critical

to the identification of terrestrial impact structures because

of their uniqueness, wide distribution, ease of identification,

and especially their ability, to survive over long periods of

geologic time.
With the acceptance of shock effects as a criterion for

impact, the record of terrestrial impact events is no longer

limited to small young structures that still preserve definite

meteorite fragments. Equally convincing evidence for im-

pact can now be provided by a wide variety of distinctive
deformation effects in the rocks themselves, and it has be-

come possible to identi_ numerous old impact structures
from which weathering and erosion have removed all physi-

cal traces of the projectiles that formed them. The recogni-

tion of preserved shock effects has been the main factor

behind the stead), increase in the number of recognized im-

pact structures since the 1960s (Grieve, 1991; Grieve et al.,
1995; Grieve andPesonen, 1992, 1996; for historical reviews,

see Hoyt, 1987; Mark, 1987).

The approximate physical conditions that produce shock-
deformation effects in natural rocks have been established

by a combination of theoretical studies, artificial explosions

(both chemical and nuclear), and experiments with labora-

tory shock-wave devices (for details, see papers in French
and Short, 1968 and Roddy et al., 1977; also StdffleT; 1972;

Ki_ffer and Simonds, 1980; Melosh, 1989; st@qer and
Langenhorst, 1994). Peak shock pressures produced in an

impact event range from <-2 GPa (-<20 kbar) near the final
crater rim to >100 GPa (->1000 kbar) near the impact point.

These pressures, and the resulting shock-deformation ef-
fects, reflect conditions that are far outside the range of nor-

real geological processes (Fig. 4.1, Table 4.1). In ordinary

geological environments, pressures equivalent to those of

typical shock waves are attained only under static conditions

at depths of 75-1000 km within Earth, well below the shal-
low-crustal regions in which impact structures are formed.

Shock-wave pressures differ in other important ways from

pressures produced by more normal geological processes. The

application of shock-wave pressures is both sudden and brief.

A shock wave traveling at several kilometers per second will
traverse the volume of a mineral grain or a rock sample in

microseconds, and both the onset and release of pressure are

highly transient. Shock-deformation effects therefore reflect
transient stress conditions, high strain rates, and rapid

quenching that are inconsistent with the rates of normal

geological processes (Table 4.1). In addition, shock waves
deposit energy in the materials through which they pass. A

particular shock pressure will produce a specific postshock

temperature, which depends chiefly on the nature of the tar-

get material. These postshock temperatures increase with in-

creasing shock pressure (see the P-T curve labeled "Shock

metamorphism" in Fig. 4.1). For large shock pressures, the

resulting temperatures are high enough to produce melting

and even vaporization within the target.

The unique conditions of shock-wave environments pro-

duce unique effects in the affected rocks. The nature and

intensity of the changes depend on the shock pressures

31
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Fig. 4.1. Conditions of shock-metamorphism. Pressure-temperature plot showil g comparative conditions for shock metamorphism

and normal crustal metamorphism. [Note that the pressure axis (X-axis, in GPa) is 1)garithmic.] Shaded region at lower left (P < _5GPa,

T < 1000°C) encloses the conventional facies (labeled) fbr crustal metamorphism. Shock-metamorphic conditions (at right) extend from

~7 to >100 GPa and are clearly distinct from normal metamorphic conditions. A _proximate formation conditions for specific shock

effects (labeled) are indicated by vertical dashed lines, and the exponential curve (:'Shock metamorphism") indicates the approximate

postshock temperatures produced by specific shock pressures in granitic crystallin : rocks. Relatively high shock pressures (>50 GPa)

produce extreme temperatures, accompanied by unique mineral decomposition reac :ions (at left, near temperature axis). Stability curves

for high-pressure minerals (coesite, diamond, stishovite) are shown for static equ librium conditions; formation ranges under shock

conditions may vary widely. (Adapted from St@_ler, 1971, Fig. 1; Grieve, 1990, p. 7: :; Grieve and Pesonen, 1992, Fig. 9.)

TABLE 4.1. Shock metamorphism: Distinction fror i other geological processes.

Regional and Contact Metamorphism;

Characteristic lgneous Petrogencsis Shock Metamorphism

Geological setting _Videspread horizontal and vertical regions Sm !:ace or near-surface regions of Earth's crust

of Earth's crust, typically to depths of 10-50 km

Pressures Typically < 1-3 GPa

Temperatures Generally -_1000°C

Strain rates 10 3/s to 10-6/s

Time for completion From 105-107 yr

of process

Reaction times Slow; minerals closely approach equilibrium

10C-400 GPa near impact point; 10-60 GPa in large

voh mes of surrounding rock

Up to 10,000°C near impact point (vaporization);

_,p! call), from 500 ° to 3000°C in much of

sun _unding rock

104 's to 10_/s

"In, tantaneous": Shock-wave passage through 10-cm

dist race, <10 -s s; formation of large (100-km-

diar_eter) structure < 1 hr

Rapid; abundant quenching and preservation of

metastable minerals and glasses
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TABLE 4.2. Shock pressures and effects.

Approximate Estimated
Shock Pressure Postshock

(GPa) Temperature (°C)*

Effects

2-6 <100

5-7 100

8-10 100

10 100"

12-15 150

13 150

20 170"

>30 275

35 300

45 900

60 >1500

80-100 >2500

Rock fracturing; breccia formation

Shatter cones

Mineral fracturing: (0001) and {1011}

in quartz

Basal Brazil twins (0001)

Quartz with PDFs {1013}

Q_artz + stishovite

Graphite --4 cubic diamond

Quartz with PDFs {1012}, etc.

Q$1artz, feldspar with reduced refractive

indexes, lowered birefringence

Q_artz -+ coesite

Diaplectic quartz, feldspar glasses

Normal (melted) feldspar glass (vesiculated)

Rock glasses, crystallized melt rocks (quenched

from liquids)

Rock glasses (condensed from vapor)

* For dense nonporous rocks. For porous rocks (e.g., sandstones), postshock temperatures = 700°C

(P = 10 GPa) and 1560°C (P = 20 GPa). Data from Stoffler (1984), Table 3; Mdosh (1989),

Table 3.2; 8tO_er andLangenhorst (1994), Table 8, p. 175.

(Table 4.2). Lower shock pressures (-2-10 GPa) produce

distinctive megascopic shatter cones in the target rocks

(Milton, 1977; Roddy and Davis, 1977). Higher pressures

(>10-45 GPa) produce distinctive high-pressure mineral

polymorphs as well as unusual microscopic deformation fea-

tures in such minerals as quartz and feldspar (St_j_er, 1972).

Even higher pressures (->50 GPa) produce partial to com-

plete melting and even vaporization (->100 GPa) of large

volumes of the target rocks.

An especially distinctive and convincing form of evidence

for meteorite impact is the suite of unique microscopic de-

formation features produced within individual minerals by

higher-pressure (~10-45 GPa) shock waves. During the

impact event, such pressures develop in target rocks near the

center of the crater, and most of these rocks are immediately

broken up and incorporated into the excavation flow that is

being initiated by the expanding release wave (Figs. 3.4 and

3.5). As a result, these shock effects are found chiefly in in-

dividual target rock fragments in the breccias that fill the

crater or in the ejecta deposited beyond the rim.

A wide variety of shock-produced microscopic deforma-

tion features has been identified in the minerals of shock-

metamorphosed rocks (for reviews, see Chao, 1967; papers

in French and Short, 1968; StoffleT; 1972, 1974; Stdffler

and Langenhorst, 1994; Grieve et aZ, 1996). These include

(1) kink bands in micas and (more rarely) in olivine and

pyroxene; (2) several types of distinctive planar microstruc-

tures and related deformation effects in quartz, feldspar, and

other minerals; (3) isotropic mineral glasses (diaplectic or

thetomorphic glasses) produced selectively, most commonly

from quartz and feldspar, without actual melting; (4) selec-

tive melting of individual minerals. Kink bands, although

common in impact environments (Fig. 4.2), can also be pro-

duced by normal tectonic deformation; they are not a unique

criterion for shock metamorphism, and they will not be dis-

cussed further. The other effects, particularly the distinctive

planar microstructures in quartz and the diaplectic glasses,

are now generally accepted as unique criteria for shock waves

and meteorite impact events.

These shock-produced microscopic deformation features

have several distinctive general characteristics. They are

pervasive, and usually occur throughout a centimeter-sized

rock sample, although the), may be more erratically devel-

oped over larger distances (meters or tens of meters). The),
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Fig. 4.2. Kink-banding; in biotite. Large biotite grain in basement granitic gne sses, northeast side of Sudburv structure (Canada),

showing two sets of kink-banding at high angles to original cleavage (horizontal). _kssociated quartz (upper and lower left) and feldspar

show no shock-defi)rmation effects. Sample CSF 68-67 (cross-polarized light).

Fig. 4.3. Progressive shock metamorphism in sandstone (I). Unshocked Cocm,ino Sandstone from the Barringer Meteor Crater

(Arizona) is composed of well-sorted quartz grains with minor carbonate cemenl and pore space. The quartz grains are rounded to

angular, clear, and undefimned; some grains display secondary overgrowths. (Black lots are bubbles in thin section mounting medium.)

F,jecta sample (tom rim of crater. Sample MCF-64-4 (plane-polarized light).
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Fig. 4.4. Progressive shock metamorphism in sandstone (II). Moderately shocked Coconino Sandstone from the Barringer Meteor

Crater (Arizona). The quartz grains are highly fractured and show numerous sets of subparallel fractures along cleavage planes. The

original interstitial pore space has been collapsed and heated during passing of the shock wave, producing a filling of dark glass that

frequently contains coesite. Ejecta sample from ground surface outside crater. Sample MCF-65-15-4 (plane-polarized light).

Fig. 4.5. Progressive shockmetamorphism in sandstone (III). Highly shocked, melted, and vesiculated Coconino Sandstone from the

Barringer Meteor Crater (Arizona). The original sandstone has been converted to a light, froth),, highly vesicular pumice-like material

composed dominantly of nearly pure silica glass (lechatelierite). The vesicular glass contains a few remnant quartz grains (e.g., upper

center, arrow) that are highly fractured and show development of distinctive PDFs in addition to the open cleavage cracks. Ejecta sample

from ground surface outside crater. Sample MCF-65-11-2 (plane-pnlarized light).
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are mineralogically selective; a given effect (e.g., isotropiza-

tion) will occur in grains of a single mineral (e.g., quartz or

feldspar), but not in grains of other minerals, even adjacent

ones. Shock metamorphism is also characterized by a pro-

gressive destruction of original textures with increasing shock

pressure, a process that eventually leads to complete melting

or vaporization of the target rock (Figs. 4.3, 4.4, and 4.5).

4.2. STAGES OF SHOCK METAMORPHISM

The fact that different shock pressures produce a variety

of distinctive shock features (Table 4.2) has made it possible

to recognize different levels or stages of shock metamor-

phism (Chao, 1967; StUffier, 1966,1971,1984; von Engelhardt

and St_fller, 1968; StOfller andLangenhorst, 1994).These stages

are not equivalent to the different facies recognized in nor-

mal metamorphism, because shock metamorphism is a rapid

and nonequilibrium process and many of the most distinc-

tive features produced by shock waves (e.g., high-pressure

minerals and diaplectic glasses) are metastable under nor-

mal geological conditions. Nevertheless, key shock features

occur frequently and consistently in natural impact struc-

tures, and the production of the same features in experimen-

tal studies has made approximate pressure and temperature

calibrations possible. As a result, the stages of shock meta-

morphism have become an important concept for field studies
of impact structures and for using certain features as ap-

proximate shock-wave barometers.

Current classifications of shock-metamorphic stages are

based almost entirely on features developed in nonporous,

quartz-bearing, crystalline igneous and metamorphic rocks.

These lithologies are abundant in many of the impact struc-

tures studied so far, and they develop a varied suite of shock

features over a wide range of shock pressures. Individual clas-

sifications of shock-metamorphic stages in these rocks dif-

t-er in details, but the following summary of distinctive shock

features and their approximate shock pressures (based largely

on St_fller, 1966, 1971, 1984; St_erandLangenhorst, 1994)

provides a useful classification based on field and petrographic
characteristics. [Other effects observed with increasing shock

pressure include decreases in refractive index and increasing

structural disorder (shock mosaieism) in mineral grains; for

details, see StofJler, 1972, 1974; StOffler and Langenborst,
1994).] It should be remembered that estimated pressures

are only approximate, and that the formation of a given shock

effect will also reflect such individual factors as rock type,

grain size, and other structural features. The shock effects

observed, and the inferred stages of shock metamorphism,

will be different for other rock types, especially for carbon-

ates, basaltic rocks, and porous rocks of any type.

For nonporous crystalline rocks, the following stages have

been distinguished (see Table 4.2):

<2 GPa

Fracturing and brecciation, without development of

unique shock features (see Chapter 5).

>2 GPa to <30? GPa

Shatter _'ones. At lower pressures (2 to <10 GPa), occur-

ring witho_lt distinctive microscopic deformation features.

At higher I:ressures (10 to -<30GPa), shatter cones may also
contain dis inctive microdeformation features.

~8 GPa to 25 GPa

Microsc3pic planar deformation features in individual

minerals, e, pecially quartz and feldspar. It has been possible
to subdivid e this zone on the basis of different fabrics of

deformatio i features in ql)artz (Robertson et al., 1968; St_Jfler
and Langer, borst, 1994).

>25 GPa t) 40 GPa

Transfo_ mation of individual minerals to amorphous

phases (dia 31ectic glasses) without melting. These glasses

are often a, companied by the formation of high-pressure

mineral pol :morphs.

>35 GPa t,, 60 GPa

Selectiw partial melting of individual minerals, typically

feldspars, h creasing destruction of original textures.

>60 GPa tq, 100 GPa

Complel e melting of all minerals to form a superheated
rock melt (see Chapter 6).

,100 GPa

Complete rock vaporization. No preserved materials

formed at t fis stage (e.g., by vaporization and subsequent

condensation to glassy materials) have been definitely iden-
tified so far.

4.3. MEP_,ASCOPIC SHOCK-DEFORMATION

FEATURES: SHATTER CONES

Shatter c _nes are the only distinctive and unique shock-

deformatior feature that develops on a megascopic (hand

specimen to autcrop) scale. Most accepted shock-metamor-

phic feature_, are microscopic deformations produced at rela-
tively high st ock pressures (>10 GPa). Lower shock pressures

(1-5 GPa) F roduce a variety of unusual fractured and brec-

ciated rocks, but such rocks are so similar to rocks formed by

normal tectonic or volcanic processes that their presence can-

not be used Lsdefinite evidence for an impact event. How-

ever, such lov, shock pressures also generate distinctive conical

fracturing pa :terns in the target rocks, and the resulting shat-

ter cones hax e proven to be a reliable field criterion for iden-

tifying and smdying impact structures (Dietz, 1947, 1959,

1963, 1968; Milton et al., 1972, 1996a; Roddy and Davis,

1977; Sharp; 9n et al., 1996a; Dressler and Sbarpton, 1997).
Shatter cones are distinctive curved, striated fractures that

typically form partial to complete cones (Figs. 4.6 and 4.7).
They are generally found in place in the rocks below the

crater floor, usually in the central uplifts of complex impact

structures, but they are also rarely observed in isolated rock
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Fig. 4.6. Shatter cones; small, well-developed. Small, finely sculptured shatter cones, developed in fine-grained limestone from the
Haughton structure (Canada). The cone surfaces show the 9-pical divergence of striae away from the cone apex ("horsetailing'). Photo-
graph courtesy of R. A. F. Grieve.

fragments in breccia units. Shatter cones occur as individu-

als or composite groups, and individual cones may range from

millimeters to meters in length (Figs. 4.7, 4.8, and 4.9) (Dietz,

1968; Sharpton et al., 1996a). Far more common, however,

are partial cones or slightly curved surfaces with distinctive

radiating striations ("horsetailing") on them (Fig. 4.10).
The details of shatter cone morphology are also distinc-

tive. Smaller secondary ("parasitic") cones commonly occur

on the surfaces of both complete and partial shatter cones,

forming a unique composite or "nested" texture. The sur-
faces of shatter cones, and the striations on them, are defi-

nite positive/negative features. The striations are also

directional; the)' appear to branch and radiate along the sur-

face of the cone, forming a distinctive pattern in which the

acute angle of the intersection points toward the apex of the

cone (Figs. 4.6, 4.8, and 4.10).

Shatter cones form in all kinds of target rocks: sandstones,

shales, carbonates, and crystalline igneous and metamorphic
rocks.The most delicate and well-formed cones form in fine-

grained rocks, especially carbonates (Fig. 4.6). In coarser
rocks, shatter cones are cruder, and their striations are larger,

making the cones more difficult to recognize and distinguish
from nonshock deformational features such as slickensides

(Figs. 4.8 and 4.10).
Shatter cones, especially well-formed examples, are

easy to distinguish from similar nonimpact features (see

Table 4.3). Some shatter cone occurrences may superficially

resemble the "cone-in-cone" structures produced during
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lithification of carbonate-bearing clastic sediments. How-

ever, the cones in cone-in-cone features have their axes nor-

mal to the bedding of the host rocks and their apexes pointing

down. Shatter cones generally point upward, and their axes

may lie at any angle to the original bedding, depending on

the preimpact orientation of the target rock and its location

relative to the impact point. Furthermore, the occurrence of

shatter cones in a variety of rock types, especially non-

sedimentary ones, is a good indication of an impact origin.

The horsetailing striations on shatter cone surfaces some-

times resemble slickensides formed on faults, especiallywhen

the surfaces are approximately flat (Figs. 4.8 and 4.10). How-

ever, unlike slickensides, shatter cone striations are nonpar-

allel and often show strong radiation and directionality, so

that it is easy to determine the direction of the cone apex.

Shatter cones are now generally accepted as unique indi-

cators of shock pressures and meteorite impact. They are

especially valuable in this role because they form at relatively

low shock pressures (typically 2-10 GPa, but perhaps as

high as 30 GPa) and therefore develop throughout a large

volume of target rock below the crater floor. They are typi-

cally widely and intensely developed in exposed central up-

lifts of large structures. Shatter cones form in a wide range

of rock types, they are resistant to subsequent metamorphism,

and (when welt developed) they can be easily and immedi-

ately recognized in the field. Frequently, an initial discovery

of shatter cones has spurred the search for, and discovery of,

a range of equally' definite shock effects produced at even

higher pressures.

For well-developed shatter cones, it is possible to mea-

sure the orientation of the cone axes and to statistically de-

termine the varying orientations of shatter cones through-

out an impact structure. Such measurements (e.g., Manton,

1965; Guy-Bray et al., 1966; Milton et al., 1972, 1996a)

have provided strong support for the use of shatter cones

Fig 4.7. Sl'atter cones; large. Large shatter cone and crudely

conical striat :d surfaces in Mississagi Quartzite from the South

Range (Kelle y Lake) of the Sudbury structure (Canada). Cone

axes point up _vard and into the Sudbury Basin (toward viewer) at

a high angle. 27one axes are nearly parallel to the original bedding

in the quartz: te, which dips steeply" back and to the right.

Fig. 4.8. Shatter cone; huge, well-

striated. A large shatter cone, 2-

3 m long, in quartzite in the central

uplift of the Gosses Bluff structure

(Australia). The cone axis plunges

gently to the left, nearly normal to

the original bedding in the quartzite,

which appears as parallel joints dip-

ping steeply to the right. Despite the

crudeness of the large cone, the di-

rection of the apex (right), parasitic

cones, and distinctive horsetailing are

'all visible. Scale rule (at top) is 15 cm

long.
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Fig. 4.9. Shatter cone; huge. Unusually large shatter cone (megacone) (light-colored area, center) exposed in a cliff along a wave-cut

shoreline on Patterson Island, one of the islands in the Slate Islands impact structure, Lake Superior (Canada).The huge cone, developed

in Archean felsic metavolcanic rocks, points nearly straight up and is at least 10 m in length. At the exposed base, the exposed surface of

the cone is at least 7 m wide. Only ~25 ° of the cone's basal perimeter is exposed, indicating that the true width of the feature may exceed

20 m at its base. Horsetail striations and parasitic cones cover all exposed surfaces. Several other large, conical features are obvious on the

near-vertical clifL but because of the steep scree-covered slopes these features have not yet been examined in detail. Photograph courtesy

ofV. L. Sharpton.

Fig. 4.10. Shatter cones; crude,
striated surfaces. Poorly developed

shatter cones in Serpent Qoartzite,

Sudbury (Canada).The cones are only

partially developed, appearing as
curved and striated surfaces. Diver-

gence of the striae indicates that the

cone apexes are to the right. Pen (at

center) is 12 cm long.
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TABLE 4.3. Shatter cones: Distinction from o :her geological features.

Cone-in-Cone Shatter Cones

Conical secondary growth features formed during

diagenesis; found in undisturbed sedimentary rocks.

Restricted to carbonate-bearing rocks (limestones,

limy shales); associated with secondary" carbonate.

Cone axes normal to bedding planes.

Cones oriented point-down.

Striations along cone surfiice generally continuous,
uniform.

Cone surfaces are growth surfaces against other cones
or fine matrLx in rock.

Rocks Q'pically show no deformation, metamorphism.

Conical fracture featm es formed by transient shock waves (P -2 to

>10 GPa) and found i i meteorite impact structures, typically in uplifted
central rocks.

Found in all rock type. (sedimentary, igneous, metamorphic). Best

developed in fine-grai led rocks, especially limestones.

Cone axes oriented at my angle to bedding, depending on orientation of

rock at time of impact and on postimpact movements.

Cones originally form pointing in direction of source of shock wave, i.e.,

inward and upward. C rientation varies over structure. Orientation further

modified by developm mt of central uplift or later postcrater deformation.

When beds restored t( original horizontal position, cones point toward a

focus above original su trace, indicating external source of shock wave.

Striations along cone s arface typically show development of divergent

radiations ("horsetailir g") along surface. Development of secondau

(parasitic) cones on m; in cone is typical.

Cone surfaces are actual fracture surfaces; rock splits into new shatter-

coned surfaces along cone boundaries. Unlike slickensides, striated cone

surfaces show no relati m motion, fit together without displacement.

Frequently contain kin k-banded micas or quartz (coarser grains) with

shock-produced plana: deformation features (PDFs).

as a criterion fi)r impact. In several impact structures that

formed in originally flat-lying sediments, the apexes of shatter

cones in the rocks point inward and upward when the rocks

are graphically restored to their original horizontal preim-

pact position, indicating that the source of the shock wave

that produced the shatter cones was located above the origi-

nal ground surLlce (Gz(v-Bmy et al., 1966; Dietz, 1968;

Manton, 1965; Hov2ardand Ofliekt, 1968; Wilshire et al., 1972;

Milton etal., 1972, 1996a). More recently, shatter cones in

the Beaverhead (Idaho) structure (Hargraves et al., 1990)

have been used to reconstruct the original shape and size

of a large, ancient impact structure that was subsequently

dissected and redistributed by major faulting during the

Laramide Orogeny:

The use of shatter cones to identiff impact structures re-

quires caution, especially in cases where no other shock ef-

fects can be identified. Poorly developed shatter cones

(Figs. 4.8 and 4.10) can be easily confused with normal frac-

tures and slickensides, and the latter may be misidentified

as shatter cones. Even in well-established impact structures,

shatter cones may be entirely absent or poorly developed, or

their orientations may be locally diverse and ambiguous

(Fig. 4.11). Detailed studies of shatter cone orientations need

to be done at more impact structures where they are well

developed, but such studies need to be done with care (see,

e.g., Manton, 1965; Milton etal., 1972, 1996a).

It is a paradox that, even though shatter cones are a proven

and valuable indicator of shock metamorphism and impact

structures, the exact mechanisms by which the radiating

shock wave interacts with the target rock to generate shatter

cones have aot been studied in great detail and are still not

understood (e.g., Dietz, 1968; Gash, 1971; Milton, 1977;

Sharpton et al., 1996a). A further complication in shatter

cone format on is the evidence that, although the cones them-

selves form at relatively low shock pressures, localized melt-

ing and gla :s formation can occur along the cone surfaces,

probably as the result of a complex combination of shock

and frictim al mechanisms (Gay, 1976; Gay et al., 1978;

Gibson and, ;pray, 1998). Combined theoretical, experimen-

tal, and fiel _ studies to understand the exact conditions of

shatter corn formation are a major challenge for the future.

4.4. HIGH-PRESSURE MINERAL

POLYMORPHS

When st bjected to impact-produced shock waves, some

minerals in target rocks (e.g., quartz, graphite) may trans-

form to hig a-pressure minerals, just as they do under high

static presst res produced in laboratory experiments or deep

in Earth's ct ast. Graphite (C) can be converted to diamond.

Q_artz can be converted to stishovite at shock pressures

of >12-15 _Pa and to coesite at >30 GPa (StOfi7er and

Langenhorst 1994). [These numbers illustrate one of the

many differ, races between shock processes and normal geo-

logical defm mation. Under conditions of static equilibrium,

where reaction rates are slower and kinetic factors less im-
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Fig. 4.11. Shatter cones; small, diversely oriented. This specimen shows a group of small, well-developed shatter cones, formed in a

sample of Precambrian crystalline target rock at the Slate Islands structure (Canada). The cones show two distinct orientations, and cone

axes appear to diverge above and below the coin. This type of diverse orientation may reflect small-scale nonuniformities in the shock

waves, produced by local heterogeneities (bedding planes, joints, etc.) in the rock sample. Coin is about 2 cm in diameter. Photograph

courtesy ofV. L. Sharpton.

Fig. 4.12. Diaplectic quartz glass; with coesite. Diaplectic quartz glass (clear), with strings of small, high-relief crystals ofcoesite ("C").

From biotite granite inclusion in suevite breccia, Aufhausen, Ries Crater (Germany). Photograph courtesy ofW. von Engelhardt (plane-

polarized light).
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portant, coesite forms from quartz at lower pressures
(>2 GPa) than does stishovite (10-15 GPa).]

The identification ofcoesite and stishovite at several sites

in the early 1960s provided one of the earliest criteria for

establishing the impact origin of several structures, most

notably the Ries Crater (Germany) (Chao et al., 1960;

Shoemaker amt Chao, 1961) (Fig. 4.12). Most subsequent
identifications of impact structures have been based on

shock-produced planar deformation features (PDFs) in

quartz, which are more widely distributed and simpler to

identi_: However, the discovery of both coesite and stishovite

in the ancient Vredefort structure (South Africa) (Martini,

1991) was an important step in the growing acceptance of

this structure as an impact site. Diamond and other high-

pressure carbon compounds [e.g., lonsdaleite (hexagonal dia-

mond)] produced from graphite in the shocked target rocks

have also been identified at an increasing number of impact

structures (Masaitis, 1998; Masaitis et al., 1972; Hough et al.,
1995; Koeberl et al., 1997c).

Coesite, stishovite, and diamond, when they are found in
near-surface rocks, are unique and reliable indicators of me-

teorite impact. None of these minerals has been identified,

fi)r example, as the result of explosive volcanic eruptions. The

use of coesite and diamond as impact criteria does require
some care, however, because both minerals also occur natu-

rally in deep-seated (depth >60 km) terrestrial rocks, where

they have formed in stable equilibrium at the high static pres-

sures (>2 GPa) present at these depths. Both minerals may

then be transported to Earth's surface: coesite by tectonic

processes and diamond in fragments carried up by unusual

mafic (kimberlite) volcanic eruptions. However, stishovite,
formed only at pressures >10 GPa, has never been identified

in a nonimpact setting. Such static pressures could be pro-
duced only at depths of 300-400 km within Earth. Fur-

thermore, the occurrence of such high-pressure minerals as
coesite, stishovite, or diamond in near-surface crustal rocks

[e.g., coesite and stishovite in sandstone at Barringer Me-

teor Crater (Arizona)], particularly when they occur as a dis-

equilibrimn assemblage with other chemically equivalent

minerals (e.g., coesite + stishovite + silica glass + quartz), is

definite evidence for meteorite impact.

4.5. PLANAR MICROSTRUCTURES

IN QUARTZ

Shock waves produce a variety of unusual microscopic
planar features in quartz, feldspar, and other minerals. These

features typically occur as sets of parallel deformation planes

within individual crystals. The recognition and interpreta-

tion of these features, particularly those in quartz, as unique

products of meteorite impact has been a critical factor in

identifying most new impact structures, in recognizing the

impact origin of large, ancient, or deeply eroded structures,

and in demonstrating the role of meteorite impact in the
K/T extinction event.

Distinctive planar features in quartz (SiO2) have been one

of the most widely applied criteria for recognizing impact

structures ( _orreviews, details, and literature references, see

papers in t'rench and Short, 1968; also van Engelhardt and

Bertsch, 19{ 9; StOffler and Langenhorst, 1994; Grieve et al.,

1996). O.Ba "tz is an ideal mineral for this purpose. It is abun-

dant in awi Je range of sedimentary and crystalline rocks. It

is stable ov :r long periods of geologic time, and it resists

change by :.Iteration and metamorphism. It is an optically
simple (uni, 'xial) mineral to study and to analyze on the Uni-

versal Stage (U-stage). In particular, it displays a variety of

different pl mar features whose development can be corre-

lated with s rock pressure (Table 4.2) (HOrz, 1968; Robertson

etal., 1968; StSfJlerandLangenhorst, 1994), and can thus be

used as ash )ck barometer to reconstruct the shock-pressure

distributior that existed within an impact structure during

the impact event (Robertson, 1975; Grieve and Robertson,
1976; Robet :son and Grieve, 1977; Grieve et al., 1996; Dressler
et al., 19981.

The pro, luction and properties of planar microstructures

in quartz h'..ve been studied intensely since the early 1960s

by geologic d investigations, shock-wave experiments, and

both optica and electron microscopy (papers in French and

Short, 1968 also StOf/Ter and Langenhorst, 1994). It is now

recognized :hat shock waves produce several kinds of planar
microstruct _res in quartz, and their detailed characteriza-

tion and in1 erpretation has been -- and still is -- an active

and much-, tebated problem (e.g., Alexopoulos et al., 1988;

Sbarpton a_ d Grieve, 1990). At present, two basic types of

planar features can be recognized, planar fractures and pla-
nar deform ttion features (PDFs) (Table 4.2).

4.5.1. Planar Fractures

Planar fi actures are parallel sets of multiple planar cracks

or cleavage,, in the quartz grain; they develop at the lowest
pressures _haracteristic of shock waves (~5-8 GPa)

(Figs. 4.13 md 4.14). The fractures are typically 5-10 pm

wide and sp: Lced 15-20 pm or more apart in individual quartz

grains. Sinai ar cleavage also occurs rarely in quartz from non-

impact setti: lgs, and therefore planar fractures cannot be used

independently as a unique criterion for meteorite impact.

However, the development of intense, widespread, and closely

spaced plan tr fractures (Fig. 4.15) is strongly suggestive of

shock, and such fractures are frequently accompanied in

impact stru, tures by other features clearly formed at higher

shock pre.,sures (Robertson et al., 1968; StOffler and
Langenhorsz 1994; Grieve et al., 1996; French et al., 1997).

4.5.2. Pla aar Deformation Features (PDFs)

Planar d fformation features (PDFs) is the designation

currently us ed for the distinctive and long-studied shock-

produced m crostructures that were formerly given a variety
of names (e g., "planar features," "shock lamellae"). In con-

trast to plat ar fractures, with which they may occur, PDFs

are not open cracks. Instead, they occur as multiple sets of

closed, extremely narrow, parallel planar regions (Fig. 4.16).

Individual PDFs are both narrow (_pica_lly <2-3 pro) and

more closely spaced (typically 2-10 pm) than planar frac-

tures (Figs. 4.17 and 4.18). Detailed optical andTEM stud-
ies have shown that, within individual PDFs, the atomic
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Fig. 4.13. Quartz; cleavage and PDFs. High-magnification view of relict deformed quartz grain in highly shocked and vesiculated

Coconino Sandstone [Barringer Meteor Crater (Arizona)]. The quartz grain shows irregular, subparallel fractures (dark, near-vertical),

combined with shorter cross-cutting light-and-dark planar features, possibly PDFs (upper right/lower left). Note the irregular extinction

in the grain. Sample 3¢ICF-65-15-3 (cross-polarized light).

Fig. 4.14. Quartz; cleavage. Quartz grain in moderately shocked Coconino Sandstone from Barringer Meteor Crater (Arizona), show-

ing irregular extinction and multiple sets of cleavage fractures parallel to c(0001), m{10T0}, r{1011}, and r'. c-axis direction (arrow) and

directions of cleavage traces indicated in inset. Photograph courtesy of T. E. Bunch (cross-polarized light).
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Fig. 4.15. Quartz; fractured, in quartzite. Intense fracturing of quartz in a coarse -grained metamorphosed orthoquartzite target rock
from the Gardnos structure (Norway). The large quartz grain (right) grades into a finer-grained recrystallized shear zone (left). The

quartz grain is cut by numerous subparallel pkmar fractures (longer, dark, subhorizo ltal lines) and by much shorter planar features (short,
dark, near-vertical lines) that originate along the fracture planes. These latter fear tres may be relicts of actual PDFs or of Brazil twins
parallel to the base (0001). Within the Gardnos structure, the originally white quart rite is dark gray to black and highly fractured, and the
fractures within the quartz grains contain carbonaceous material. Sample NG-94- .7B (cross-polarized light).

structure of the original crystalline quartz is severely de-

formed, so that the quartz has been transformed into a dis-

tinct amorphous phase (Miiller, 1969; Kieffer et al., 1976a;
Goltrant et al., 1991, 1992).

The importance of PDFs arises from the fact that they

are clearly distinct from deformation features produced in

quartz by nonimpact processes, e.g., cleavage or tectonic

(metamorphic) deformation lamellae (B6hm lamellae)

( Carte_; 1965, 1968; Alexopoulos et al., 1988; St_fJTer and

Langenhorst, 1994). Cleavages are open fractures; they tend
to be relatively thick (~ 10 pro) and widely spaced (->20 0m).

Deformation lamellae consist of bands of quartz typically

10-20 _lm thick and >10 lain apart that are optically dis-
tinct and slightly misoriented relative to the host grain. In

contrast to these features, shock-produced PDFs are narrow

(<2-3 _lm) straight planes consisting of highly deformed or

amorphous quartz, and they are generally oriented parallel

to specific rational crystallographic planes in the host quartz

crystal, especially to the base c(0001) or to low-index rhom-

bohedral planes such as 03{1013}, rt{1012}, and r{1011}
(Table 4.4).

The presence of well-developed PDFs produces a strik-

ing and distinctive appearance in thin section. Unaltered

PDFs tbrm nmltiple sets of continuous planes that extend

across most or all of the host grain (Figs. 4.16, 4.17, and
4.18). These fresh, continuous PDFs tend to be observed

only in unaltered material from shock-wave experiments
and from younger, well-preserved impact structures, e.g.,

Barringer Meteor Crater (Arizona) (age 50 ka) (Fig. 4.13)

and the Ri.'s Crater (Germany) (age 15 Ma) (Fig. 4.16).

However, icreservation of fresh, continuous PDFs depends

on geologi:al circumstances, including cooling rate and

postimpact temperatures. Fresh, well-preserved PDFs are

also presen in older structures, e.g., Sierra Madera (Texas)

(age <100 Ma) (Fig. 4.19) and Gardnos (Norway) (age

>400 Ma) ( rig. 4.20).The occurrence of striking fresh PDFs

in quartz e_ actly at the K/T boundary, a worldwide layer of

ejecta from the Chicxulub structure (Mexico) (age 65 Ma)

(Figs. 4.17 and 4.18), provided some of the most important
initial evidmce that a large meteorite impact event had
occurred at that time.

In altere :l, geologically old, or metamorphosed samples,

PDFs have an equally distinctive but discontinuous charac-

ter. The ori ginal amorphous material in the PDF planes is

recrystalliz,:d back to quartz, and in the process, arrays of

small (typi:ally 1-2 gm) fluid inclusions ("decorations")

develop alo ag the original planes (Figs. 4.21 and 4.22).The

resulting features, called decorated PDFs (Robertson et al.,

1968; &Off, er and Langenhorst, 1994) preserve the orienta-

tion of the original PDFs, and the distinctive shock-pro-

duced fabric can still be recognized in old rocks that have

even undergone metamorphism [e.g., greenschist facies at

Sudbury (Canada); Fig. 4.23]. More intense recrystalliza-

tion produces arrays of small mosaic quartz crystals
(subgrainsl, especially along PDFs originally parallel to the

base c(000]) of the quartz grain (Leroux et al., 1994).

A secord type of PDF, oriented parallel to the base

c(0001), h_ s recently been identified, chiefly by studies of
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Fig. 4.16. Quartz; multiple PDFs, fresh. Striking multiple sets of PDFs developed in a quartz grain from a shocked granite inclusion

in suevite from the Ries Crater (Germany). "X' indicates PDFs parallel to {10]-3] or {01]3}; "B" indicates PDFs parallel to {1011] or

{0111}. Note the irregular mottled extinction within the quartz grain. From yon Engelhardt and Sto_er (1965), Fig. 1. Photograph

courtesy of W. yon Engelhardt (cross-polarized light).

%

Fig. 4.17. Quartz; multiple PDFs, fresh. Small quartz grain

(0.20 mm long) from K/T boundary ejecta layer, showing two

prominent sets of fresh (undecorated) PDFs. (Small dots with

halos are artifacts.) Specimen from Starkville South, a few kilo-

meters south of Trinidad, Colorado. Photograph courtesy of

G. A. Izett. Spindle stage mount (plane-polarized light).

Fig. 4.18. Quartz; multiple PDFs, fresh. Small quartz grain

(0.36 mm long) from K/T boundary ejecta layer, containing one

opaque inclusion and multiple (3-5?) prominent sets of fresh

(undecorated) PDFs. Specimen from Clear Creek North, a few

kilometers south of Trinidad, Colorado. Photograph courtesy of

G. A. Izett. Spindle stage mount (plane-polarized light).
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TABLE 4.4. Typicalcrystallographicori_ntationsofplanar

microstructures in shocked quartz (mq,dified from

StOfflerandLangenhorst, 1994, Table 3, p. 164).

Symbol Miller Indexes

Polar Angle

(Ang e Between Pole to Plane

and Quartz c-axis)

* (0001) 0°C

m, m' * [10T3),{01i3} 23 °

n, n' * [1012),{0112} 32 °

r, z * [10111,(01il) 52 °

m [1010} 90 °

{112.2},{2112} 48 °
s {117.1},{2iil} 66 °

a {1120},{2110} 90 °

* {22741},{4_1} 77 °

t [40741},{047ll} 79 °

k [51g0},{6i50} 90 °

x {5191},{65iI} 82 °

{6i51},{15gl}

-- [312ll},{43il} 78 °

{4_a},[a3741}
-- {2131},[32.11) 74 °

*Prominent planes in typical shock fabrics.

Fig. 4.19. O_artz; multiple PDFs, fresh. Shocked quartz grain containing multi l,le sets of fresh PDFs. The grain is included with rare

sandstone fragments in a carbonate breccia dike that cuts the deformed basemem rocks at Sierra Madera (Texas), an impact structure

developed in a target composed dominantly of carbonate rocks. The closely spaced P DFs give a distinctive darkened, yellowish appearance

to the quartz grain. Sample SMF-65-2-2 (plane-polarized light).
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Fig. 4.20. Quartz; multiple PDFs, slightly decorated. Q_lartz grain in a carbon-bearing crater-fill breccia from Gardnos (Norway),

showing two well-developed sets of {1013] PDFs. In places, the normally continuous PDFs break down into a string of small fluid

inclusions (small black dots) that follow the original trace of the PDFs. This process, by which the originally glass)' material in the PDFs

is recrystallized and replaced by fluid inclusions, has produced decorated PDFs, in which the original PDFs are visible only by the arrays

of fluid inclusions that reproduce their original orientations. Sample NG-94-31 (plane-polarized light).

Fig. 4.21. Quartz; multiple PDFs, decorated. Large compound quartz grain from shocked basement rock inclusion in suevite breccia

from Rochechouart (France), showing two prominent sets of partially decorated PDFs (north-northeast/south-southwest; northeast/

southwest). Original, partly continuous PDF traces are still recognizable from the location of small fluid inclusions (black dots) along the

original PDF planes. Sample FRF-69-16 (cross-polarized light).
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Fig. 4.22. Quartz; multiple PDFs, decorated. Compound quartz grain showing 1wo prominent sets of decorated PDFs (north/south;

northwest/southeast).The original PDF planes are now largely replaced by arrays ot small fluid inclusions that preserve the original PDF

orientations. Sample from Precambrian basement gneiss in the central uplift of :he Carswell Lake structure (Canada). Photograph

courtesy of M. R. Dence. Sample DCR-11-63B (cross-polarized light).

Fig. 4.23. Quartz; multiple PDFs, decorated. High-magnification view of shocked quartz from ejecta block in metamorphosed sue-

rite, showing multiple sets of recrystallized PDFs (northwest/southeast; east/west) now expressed by arrays of small fluid inclusions

(black dots). Quartz grain also contains numerous random larger fluid inclusions scattered through the grain. Sample from a small

granitic gneiss inclusion in the Onaping Formation "Black Member," from the 9 ?e locali_, Onaping Falls (Highway 144, DoMing

Township), northwestern corner of the Sudbury structure (Canada). Photograph c mrtesy of N. M. Short. Sample CSF-66-39 (cross-

polarized light).
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Fig. 4.24. Quartz; basal PDFs. Large irregular quartz grain associated with sericitized feldspar (dark) in footwall granitic rocks on
North Range of Sudbury structure (Canada), together with shatter cones and pseudotachylite. Grain shows one well-developed set of
PDFs (upper left/lower right), which appear as linear arrays of small fluid inclusions parallel to the base (0001) of the quartz grain.
Sample CSF-67-55-2 (cross-polarized light).

shocked quartz with transmission election microscopy

(TEM), as Brazil twins (Fig. 4.24) (Leroux etal., 1994;Joreau

et al., 1996). This form of twinning also occurs in natural

unshocked quartz, but it has never been observed parallel to
the base in such samples. Experimental formation of basal-

oriented Brazil twins in quartz requires high stresses (about

8 GPa) and high strain rates, and it seems probable that such

features in natural quartz can also be regarded as unique

impact indicators (StUffier andLangenborst, 1994).

4.5.3. PDF Orientations

Despite the distinctive appearance of PDFs in thin sec-

tion, appearance alone is not adequate to distinguish them

from nonshock features or to argue that they are impact
produced. An additional and definitive characteristic of PDFs

is their tendency to form along specific planes in the quartz
crystal lattice. Measurements of PDF orientations within the

host quartz grain therefore provide a simple and reliable

method to distinguish them from planar structures produced

by nonshock processes. PDF orientations can be measured

using standard petrofabric procedures on a U-stage (for de-

tails, measurement techniques, and specific studies, see Carter,

1965, 1968; Robertson et al., 1968; yon Engelhardt and Bertsch,

1969;Alex0p0ulos et al., 1988; Stdffler and Langenhorst, 1994)

or on the related spindle stage (Bloss, 1981; Medenbacb, 1985;
Bohor et al., 1984, 1987; Izett, 1990).

The procedures involve measuring, in a single quartz grain,
both the orientation of the pole (normal) to each set of PDFs

and the orientation of the c-axis (= optic axis) of the grain.

The measurement data are then plotted on a standard

stereonet, and the results are expressed as the location of the

pole to the PDFs relative to the c-axis. If a large number of

PDF measurements can be made on a sample, a convenient,

although not entirely rigorous, method to present compara-

tive results is to plot a frequency diagram (histogram) of the

angles between the c-axis and the pole to each set of PDFs.
Because shock-produced PDFs in a given quartz grain

are parallel to only a few specific crystallographic planes, the

angles measured between the quartz c-axis and the poles to

the PDFs tend to concentrate at a few specific values. In a

histogram plot, the poles appear as sharp concentrations at

specific angles, each of which corresponds to a particular

plane (Figs. 4.25 and 4.26).

This sharply peaked pattern of PDF orientations, typi-

cally characterized by peaks at c(0001) (0°), m{1013} (23°),
and r_{10T2} (32"), is one of the most useful and most-used

indicators of meteorite impact. Such plots clearly demon-
strate the great difference between PDF distributions

(Figs. 4.25a-c) and the more widely distributed, bell-shaped
distribution characteristic of metamorphic deformation

lamellae (Fig. 4.25e). Such plots are also used to distinguish

different shock-produced fabrics that reflect different shock

pressures (Fig. 4.26).

Experimental and geological studies have demonstrated

that PDFs form in quartz at pressures of ~7-35 GPa, or at

the lower end of the range of shock-metamorphic pressures
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Fig. 4.25. Quartz; PDF orientations. Comparative histograms showing orien:ations of shock-produced PDFs and other planar

dct'ormation features in quartz (from Carter, 1965). In each diagram, the angle b .=tween the quartz c-axis and the pole to the planar

feature is plotted oll the x-_xis; y-_txis indicates frequency for each given angle. _hock-produced fabrics are characterized by strong

orientations parallel to a few specific crystallographic planes. (a) and (b) Basal-orient .'d sets of deformation lamellae in shocked sandstones

from the Vredefort (South Africa) and Barringer Meteor Crater (Arizona) structures; (c) distinctive PDFs showing the distinctive

concentration parallel to c0[10T3} [shocked crystalline rocks; Clearwater Lakes (Canada)]; (d) low-angle, near-basal fabric of deformation

lamellae generated under high-strain experimental conditions; (e) broad distribution of metamorphic deformation lamellae (B6hm lameUae)

produced by normal metamorphic conditions. The distinctive differences between _hock-produced fabrics (a), (b), and (c) and those of

normal metamorphism (e) have been one of the strongest arguments for the meteorite impact origin of suspected impact structures.
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different shock pressures, based on measurements of shocked crystalline rocks from several Canadian impact structures (from Robertson

et al., 1968). With increasing shock pressures, both the total number of PDFs and the number of different orientations increase. The

following fabrics, and the minimum shock pressures estimated to form them (Grieve andRobertson, 1976, pp. 39-40), can be recognized:

type .4 (P > 7.5 GPa): basal PDFs only; type B (P > 10 GPa), appearance of c0[1013] planes, typically with basal planes; type C

(P > 14 GPa), appearance of [22741} planes with others; type D (P > 16 GPa), appearance of x{10]-2} planes with others. These tabrics

have been used as shockbarometers to measure the intensity and distribution of shock pressures in several structures (Grieve andRobertson,

1976; Robertson and Grieve, 1977; Dressier and Sharpton, 1997). From Carter (1965).
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(e.g., Hg_rz, 1968; StOffler and Langenhorst, 1994). However,
the relative abundance of different PDF orientations varies

significantly with shock pressure. Basal Brazil twins, although

little studied so far, appear restricted to shock pressures be-
low 10 GPa. PDFs parallel to o){1013} develop at about ->7-

10 GPa, and PDFs parallel to rt{1012} at about ->20 GPa.

At higher pressures, e.g., 20-35 GPa, the total number of

PDF sets increases, and additional orientations appear

(Fig. 4.26). The PDFs formed at these higher levels tend to

be intensely developed and ve_ closely spaced within the

quartz grains (Figs. 4.16, 4.18, and 4.27).

4.5.4. PDFs in Sedimentary Rocks

Although PDFs and their orientations can be reliably used

as indicators of shock and impact events, it is becoming clear

that our current knowledge about such features is incom-

plete and unrepresentative. Nearly 'allour infbrmation to date

has come from impact structures formed in dense, coherent,

quartz-bearing crystalline rocks. There is relatively little in-
formation about the effects of shock deformation in other

kinds of quartz-bearing rocks, e.g., porous sandstones or fine-
grained shales.

Several studies have demonstrated that shocked sand-

stones and shales also develop PDFs in quartz, and even

diaplectic quartz and feldspar glasses, similar to those ob-

served in shocked crystalline rocks, and these features have

been obser zed in sediraentary rocks from several impact

structures (Kie_; 1971, Kieffer et al., 1976a; Grieve et al.,
1996).

Despite :hese similarities, a growing amount of data now

indicates tk at sedimentary rocks, especially porous ones, re-

spond diffe rently to shock waves than do nonporous crys-

talline rock. One indication of significant differences is that

PDF fabric ; measured in sediments show a large proportion

of PDFs w lose poles are oriented at high angles (>45 °) to
the quartz ,:-axis (Grieve et al., 1996; Gostin and Therriault,

1997). Other possible differences are that PDFs may first

appear, or a particular PDF fabric may develop, at different

shock press_ ires in sedimentary rocks than in crystalline rocks.

A more important difference between porous and non-

porous rocl:s is that a shock wave passing through porous

sediments _¢ill generate more heat than in passing through

crystalline ocks, chiefly because more of the shock-wave

energy is ab _orbed by the numerous grain interfaces and pore

spaces in tte sediment (Kieffer, 1971; Kieffer et al., 1976a;

Kiefferand 9imonds, 1980; StOffler, 1984). As a result, exten-

sive meltint ;will occur at lower shock pressures in sediments

than in cry talline rocks, i.e., at about 15-20 GPa in sand-

stone vs. 50 -60 GPa in crystalline rocks (stoJ:Jler, 1972,1984).
Therefore, l he higher-pressure fabrics of quartz PDFs, which

form at 20- 30 GPa in crystalline rocks, may' not be found in

sediments, tither because they did not form or because they

Fig. 4.27. Quartz; multiple PDFs, fresh. Photomicrograph showing at least four sets of fresh PDFs in a shocked quartz grain from
crystalline target rocks at the Lake St. Martin impact structure, Manitoba (Canada). Two prominent PDF sets (northwest/southeast and
west-northwest/east-southeast) are accompanied by less obvious sets oriented approximately north/south and east/west. Petrofabric
measurements with a U-stage show that the PDFs are oriented parallel to both o){1013} and tt{1012}, indicating moderately high shock
pressures (>15 GPa). Patches of diaplectic glass, associated with the shocked quartz, appear as dark zones (e.g., upper right). Width of
field is ~100 lain. Photograph courtesy ofV. L. Sharpton (cross-polarized light).
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were immediately destroyed by postshock melting. The

unique shock effects observed in sedimentary rocks can still

provide conclusive evidence for an impact origin [e.g., at

Barringer Meteor Crater (Arizona) (Kieffer, 1971)], but the

details of such occurrences cannot be accurately interpreted

on the basis of results from shocked nonporous crystalline

rocks (Grieve et al., 1996).

4.6. PLANAR MICROSTRUCTURES IN

FELDSPAR AND OTHER MINERALS

Similar planar microstructures are produced by shock in

many other minerals (e.g., St0fl7er, 1972, 1974), but such

features have been less used as indicators of meteorite im-

pact. Feldspars of all kinds (both alkali varieties and plagio-

clase) display various shock-produced planar microstructures:

fractures, deformation bands, kink bands, and actual PDFs.

Frequently, short and closely spaced PDFs may be combined

with longer and more widely spaced features (deformation

bands or albite twinning) to produce a distinctive ladder tex-

ture (Figs. 4.28, 4.29, and 4.30).

Although several studies have been made of shock-pro-

duced planar features in feldspars (e.g., St_Jfler, 1967, 1972;

papers in French andShort, 1968), these features have been

less studied and less well characterized than those in quartz.

There are several reasons for this: the greater diversity and

complexity of such features, the greater optical complexity

(biaxial) of feldspars, and the common secondary altera-

tion of the feldspar and its planar features to clays, iron

oxides, etc. (Figs. 4.29 and 4.30). Another factor in studies

focused on identifying new impact structures is the fact

that shocked feldspar in crystalline rocks is generally associ-

ated with shocked quartz, whose features (especially PDFs)

provide a quicker and simpler method for establishing an

impact origin.

Planar microstructures, both planar fractures and true

PDFs, have also been observed in other minerals, including

pyroxene, amphiboles, and several accessory phases (apatite,

sillimanite, cordierite, garnet, scapolite, and zircon) (St0fl7er,

1972). Less is known about PDF formation and orienta-

tions in these minerals, because appropriate rocks are less

abundant in most impact structures, and because the spe-

cific minerals have not been studied in detail. However, rec-

ognition of shock-produced PDFs in zircon has been

especially important in applying U-Th-Pb dating methods

to individual zircons in shocked target rocks to determine

the ages of impact structures (e.g., Krogh etal., 1984, 1993;

Kamo and Krogh, 1995).

The development of distinctive shock-metamorphic fea-

tures such as PDFs in denser mafic minerals like amphibole,

pyroxene, and olivine apparently occurs at higher pressures

and over a more limited pressure range than in quartz and

feldspar. At pressures <30 GPa, sufficient to form PDFs in

both quartz and feldspar, the most common shock effects

observed in maflc minerals are planar fractures, mechanical

twins, and general comminution (Steer, 1972); features

Fig. 4.28. Feldspar; multiple PDFs and diaplectic glass

(maskelynite). Shocked plagioclase feldspar grain from the Ries

Crater (Germany), showing development of multiple sets of PDFs

(lower right) and gradational conversion of the same crystal to

diaplectic glass (maskelynite) (upper left). Original polysynthetic

albite twin lamellae (northwest/southeast) are still preserved in

part of the crystal (lower right), but alternate twin lamellae have

either been converted to maskelynite (clear) or are crosscut by short,

closely spaced PDFs to form a distinctive "ladder" structure.

Elsewhere in the crystal (upper left), both the original twins and

the subsequent shock-produced PDFs disappear, and the whole

crystal consists ofmaskelynite. Sample from a moderately' shocked

amphibolite fragment in suevite breccia. From St_ffler (1966), Fig. 4

(plane-polarized light).

resembling true PDFs are only rarely observed. At higher

pressures, mafic minerals in naturally and experimentally

shocked basalts generally show only extreme comminution,

accompanied by the melting and flow of associated feldspar

(Kieffer et al., 1976b; SchaalandHO'rz, 1977). PDFs are there-

fore unlikely to be observed in mafic minerals in impact struc-

tures. The higher pressures apparently required for their

formation imply that they will form in a correspondingly

smaller volume of shocked rock in the structure. Further-

more, the higher shock pressures required are closer to pres-

sures that produce partial to complete melting of the rock,

so that PDFs, even if formed, would not survive any subse-

quent melting episode.
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Fig. 4.29. Feldspar; multiple PDFs,"ladder" texture. Shocked K-feldspar, showi: lg multiple sets of altered PDFs. Two types of planar

deformation features are present: (1) long, thicker, widely spaced planes (clear area _,approximately east/west) that may be deformation

bands or kink bands; (2) short, narrower, closely spaced features (northeast/southwesl and north-northwest/south-southeast) that combine

with the first type to form a distinctive "ladder" texture. The planar features have a bl ownisb-red color, possibly caused by alteration of the

feldspar to clay minerals and iron oxides. Sample from a small granitic gneiss inclusi on in the Onaping Formation "Black Member" from

the type localiq,, Onaping Falls (Highway 144, Dowling Township), northwesterJL corner of the Sudbury structure (Canada). Photo-

graph courtesy ofN. M. Short. Sample CSF-66-39 (cross-polarized light).

Fig. 4.30. Feldspar; twinning and PDFs. Large deformed feldspar crystal (microOine?) in granitic fragment in suevite breccia. Original

twinning in the feldspar (light/dark pattern, northwest/southeast) is deformed and faalted along multiple parallel fractures (east-northeast/

west-southwest). Elsewhere, the feldspar is cut by a single set of short, narrow, closely spaced planar features (northeast/southwest) that

may be actual PDFs. Sample frmn a small block of granitic gneiss from the Onaping Formation "Black Member," Sudbury (Canada).

Sample CSF-67-73 (cross-polarized light).
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4.7. SHOCK ISOTROPIZATION AND

DIAPLECTIC GLASSES

Planar microstructures form at relatively low shock pres-

sures (>7-35 GPa) (Table 4.2) (Stuffier and Langenhorst,

1994) and involve only partial and localized deformation of

the host crystal. PDFs, which develop in the upper part of

this range (10-35 GPa), involve actual conversion of the

quartz crystal structure to an amorphous phase within the

individual planes. Higher shock pressures (35-45 GPa),
which transmit more energy into the crystal, do not form

PDFs. Instead, the shock waves convert the entire crystal to

an amorphous (glassy) phase.

This shock-produced diaplectic glass (also called theto-

morphic glass) (Stodfler, 1966,1967,1972, 1984; Chao, 1967;

papers in French andShort, 1968) is completely different from

conventional glasses produced by melting a mineral to a liq-

uid at temperatures above its melting point. Diaplectic glasses
do not melt or flow; they preserve the original textures of the

crystal and the original fabric of the mineral in the rock. In
addition, although diaplectic glasses are optically isotropic

(i.e., they show no birefringence when examined petrographi-

cally under crossed polarizers), studies of quartz and feld-

spar diaplectic glasses by X-ray diffraction and infrared

spectrometry have shown that they retain much of the or-
dered atomic structure of the original crystal (e.g., Bunch et

al., 1967, 1968; St_Jfler, 1974, 1984; Arndt et al., 1982).

Samples ofdiaplectic feldspar glasses have also been experi-

mentally annealed by heating at ambient pressure to pro-

duce original single crystals (Bunch et al., 1967, 1968; Arndt
etal., 1982) or microcrystalline aggregates that preserve the

shapes of the original feldspar crystals (Arndt et al., 1982;

Ostertag and &Offer, 1982).
O_artz and feldspar are the most common examples of

minerals converted to diaplectic glasses by shock waves.

Diaplectic plagioclase feldspar glass, called maskelynite, was
in fact observed in meteorites more than a century before it
was discovered in shocked terrestrial rocks. The same mate-

rial, often well preserved, is also observed at several impact

structures where highly shocked rocks are preserved, e.g.,

the lades Crater (Germany) (Figs. 4.28, 4.32, and 4.33) and

Manicouagan (Canada) (Fig. 4.31).

In these occurrences, the unique textures of the diaplectic

glasses clearly indicate formation without melting to the liq-

uid state. The overall grain fabric of the rock is unchanged,

and the diaplectic glasses preserve the shapes of the original

quartz and feldspar grains. In some grains, the transforma-

tion to diaplectic glass is incomplete, and areas of relict bi-

refringence remain in the otherwise isotropic material

(Figs. 4.28 and 4.31). In some shocked plagioclase grains,
one set of alternating albite twins is converted to maskelynite,

while the twins of the other set remain birefringent. Other

minerals (e.g., amphibole, garnet, micas), associated with (or

even in contact with) grains of diaplectic glass, show little

Fig. 4.31. Feldspar; diaplectic glass (maskelynite). Shocked plagioclase feldspar, partially converted to isotropic diaplectic feldspar
glass (maskelynite). Parts of the original coarse feldspar grains remain crystalline and birefringent (light areas); these regions grade into
adjoining areas of maskelynite (dark). Drill-core sample from coarse-grained basement anorthosite, exposed in the central uplift of the
Manicouagan structure (Canada). Photograph courtesy ofM. R. Dence. Sample DMM-73-63B (cross-polarized light).
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I •
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Fig. 4.32. Feldspar and quartz; diaplectic glasses. Biotite gneiss containing diap[ectic feldspar glass (maskelynite) (clear, low relief;

e.g., upper right) and diap]ectic quartz glass (clear, higher relief] e.g., lower right). The associated biotite crystals (dark) have retained

their original shape and have remained crystalline and birefringent, despite the co_ plete transformation of adjacent quartz and plagio-

clase into glass)' phases (compare with Fig. 4.33). Biotite gneiss inclusion in suevite b :eccia, Otting, Pies Crater (Germany). From StUffier

(1967), Fig. 12a. Photograph courtesy of D. St6ffler (plane-polarized light).

Fig. 4.33. Feldspar and quartz; diaplectic glasses. Biotite gneiss containing diaplec -ic feldspar glass (maskelynite) and diaplectic quartz

glass (compare with Fig. 4.32). Both phases are isotropic (dark) under crossed pola 'izers. The associated biotite crystals have retained

their original shape and have remained cu'stalline and birefringent, despite the compl_ te transformation of adjacent quartz and plagioclase

into glass), phases. Biotite gneiss inclusion in suevite breccia, Otting, Pies Crater IGermany). From Steer (1967), Fig. 12b. Photo-
graph courtesy of D. St6ffler (cross-polarized light).
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Fig. 4.34. Feldspar; possible diaplectic glass, recrystallized. Large, highly deformed and recrystallized feldspar clast in suevite breccia,

surrounded by finer fragments in an opaque carbon-bearing matrix. The feldspar shows deformation and recrystallization throughout, as

indicated by the intensely mosaic extinction. The crystal is subdivided by thin irregular zones of nearly isotropic material, possibly

original melt. Plastic behavior of the fragment is also suggested by indentations of the matrix into the clast (e.g., at top).This clast can be

interpreted as a fragment of diaplectic feldspar glass that has subsequently been recrystallized to form a fine-grained microcrystalline

texture that is still similar to the original crystal. Similar reactions have been produced in experimentally annealed maskelynite. Another

possibility is that the fragment was shock-heated above its melting point, but was rapidly quenched (perhaps during deposition) before

extensive flow could occur. In any case, the unusual texture has been preserved despite subsequent metamorphism of the unit in which it

occurs. Fragment in Onaping Formation "Black Member" from type locality, Onaping Falls (Highway 144, Dowling Township),

northwestern corner of Sudbury structure (Canada). Sample CSF-66-37-2 (cross-polarized light).

deformation and retain their original form (Figs. 4.32 and

4.33), although they may show reduced birefringence and

reddening produced by the formation of hematite (e.g.,

Feldman, 1994) and cordierite (Stiihle, 1973).

Diaplectic glasses formed from other minerals (e.g., sca-

polite) have rarely been observed. Mafic minerals (e.g., py-

roxene, amphibole, and biotite) do not seem to form diaplectic

glasses, probably because the pressures required are higher

than those for quartz and feldspar, high enough so that shock-

produced melting occurs instead.

Diaplectic quartz and feldspar glasses are metastable.They

apparently do not survive if they are exposed to even rela-

tively mild postimpact thermal effects. Diaplectic glasses are

not observed in impact structures that have been even slightly

metamorphosed, even though decorated PDFs may still be

preserved in associated quartz. In such settings, instead of

diaplectic glasses, one observes quartz and feldspar grains

that are recrystallized to microcrystalline aggregates that re-

place the original crystal (Figs. 4.34, 4.35, and 4.36). Tex-

tures in the altered feldspars sometimes suggest intense plastic

deformation and flow within the original grain. These fea-

tures are often accompanied by the development ofplumose

or spherulitic microcrystalline textures that may reflect sig-

nificant thermal effects as well. Such grains of quartz and

feldspar have been tentatively interpreted as original dia-

plectic glasses that have been annealed and recrystallized,

either by immediate postshock thermal effects or by subse-

quent metamorphism (McIntyre, 1968; French, 1968b,

pp. 401-404).

4.8. SELECTIVE MINERAL MELTING

The high-pressure (35-45 GPa) shock waves that pro-

duce diaplectic glasses also generate significant and sudden

postshock temperature rises of several hundred degrees

Celsius in the rocks and minerals through which they pass

(Fig. 4.1). In the region of diaplectic glass formation,

postshock temperatures are still low enough (300°-900°C)

that virtually no actual melting occurs, and rapidly quenched

samples of diaplectic glasses suffer no further immediate

alteration. However, at slightly higher shock pressures

(~45-50 GPa), the higher postshock temperatures (->1000°C)

begin to exceed the melting points of typical rock-forming

minerals, and distinctive localized melting effects appear in

the affected rocks.

This shock-produced selective mineral melting differs

significantly from normal equilibrium melting. Under nor-
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Fig. 4.35. Feldspar; possible diaplectic glass, recrystallized.

Shock-deformed and recrystallized feldspar and quartz from a

coarse-grained granitic fragment in suevite breccia. Large original

quartz grains (lower center; gray, higher relief) are recrystallized

to finely crystalline mosaic quartz. Original feldspar grains (clear,

lower relief) are generally finely recrystallized and virtually isotropic

in some areas (compare with Fig. 4.36), although some areas of

original feldspar crystals are preserved. From granitic inclusion in

Onaping Formation "Black Member" at type locality; Onaping

Falls (Highway, 144, Dowling Township), northwestern corner of

Sudbury structure (Canada). Sample CSF-66-50-13 (plane-

polarized light).

Fig. 4.36. ?eldspar; possible diaplectic glass, recrystallized.

Shock-defor:ned and recrystallized feldspar and quartz from a

granitic frag_ lent in suevite breccia. Large original quartz grains

are recrystallized to finely crystalline mosaic quartz. Original

feldspar graias are generally finely recrystallized and virtually

isotropic in s )me areas, although some areas of original feldspar

crystals are p "eserved (compare with Fig. 4.35). In one such area

(right center;, a plagioclase crystal has been plastically deformed,

bending the original polysynthetic albite twinning (light/dark

bands) through a large angle. Despite the intense deformation of

quartz and f( ldspar, a single apatite grain (lower right) shows no

deformation. _ample from granitic inclusion in Onaping Formation

"Black Mem )er" at type localit).; Onaping Falls (Highway 144,

Dowling Tm enship), northwestern corner of Sudbury structure

(Canada). Sa nple CSF-66-50-13 (cross-polarized light).

mal conditions of increasing overall temperature, melting

occurs first at the boundaries between different mineral

grains. Two or more different minerals are involved, and the

resulting eutectic melt has a composition intermediate be-

tween that of the adjacent minerals and forms at a tempera-

ture well below that of their individual melting points. In a

shock-wave environment, each mineral grain is instanta-

neously raised to a postshock temperature that depends on

the shock-wave pressure and on the densiD _and compress-

ibility of the mineral itself. If the postshock temperature pro-

duced in a mineral exceeds its normal melting temperature,

each grain of that mineral in the rock will melt, immediately

and independently, after the shock wave has passed. The melt

will have approximately the same composition as the origi-

nal mineral before any flow or mixing takes place, and the

melt region: will initially be distributed through the rock in

the same pa :tern as the original mineral grains.

Selective melting therefore produces unusual textures in

which one ( r more minerals in a rock show typical melting

features wh! le others -- even immediately adjacent ones --

do not. Sh(cked granitic inclusions from the Ries Crater

(Germany) :requently show a texture in which feldspar has

melted, floved, and vesiculated, but the adjacent quartz re-

mains in the form of unmelted diaplectic glass (Chao, 1967;

St_J_er, 1972, 1984). Similar textures can be preserved even

in subseque;_tly metamorphosed rocks, in which flowed and

recrystallized feldspar is accompanied by recrystallized but

undeformed grains of quartz (Fig. 4.37).
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At higher shock pressures, where temperatures are higher

and cooling times may be longer, these selective melting tex-

tures may be complicated by the effects of normal eutectic

melting at grain boundaries (Fig. 4.37). In some shocked

rocks, postshock temperatures may exceed the melting points

of all the minerals present, and the rock will melt to a mix-

ture of heterogeneous glasses that may preserve (depending

on the amount of subsequent flow and mixing) the original

shapes and mineral compositions. If such rocks are quenched

before flow and mixing can occur, the chemically diverse

glasses can survive and be recognized, even after significant

metamorphism (Fig. 4.38) (Peredery, 1972).

Such distinctive selective melting textures are relatively

uncommon in rocks from impact structures. The region of

shock pressures that produces them is relatively narrow (~45-

55 GPa), and their preservation, once formed, requires rapid

quenching, most commonly as small inclusions in crater-fill

breccias. At progressively higher shock pressures (>-55 GPa),

postshock temperatures increase rapidly, melting becomes

complete, flow and mixing processes become dominant in

the melted rock, and more chemically homogeneous bodies

of impact melt are produced (see Chapter 6).

Fig. 4.37. High-temperature effects; plastic deformation, grain-boundary melting. Highly shocked and recrystallized quartzofeldspathic

inclusion in metamorphosed suevite breccia, showing extreme deformation of quartz and feldspar. Quartz (gray, higher relief, lower right)

is recrystallized to a fine mosaic of small quartz grains. Feldspar (clear, lower relief, top) shows intense, contorted flow structure, indicating

either incipient melting or extreme plastic flow. Definite incipient melting has occurred at the grain boundaries, forming a brown melt

(dark) with lath-like microlites (white; feldspar?). (Circular feature at center is a bubble in the thin section.) Coarse-grained granitic

inclusion in Onaping Formation "Black Member," Sudbury structure (Canada). Sample CSF-67-67 (plane-polarized light).
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Fig. 4.38. High-temperature effects; complete melting. Highly shocked, melted, md recrystallized rock inclusion in metamorphosed

suevite breccia. Postshock temperatures apparently exceeded the melting points o_all component minerals, converting the originally

crystalline rock into an initially heterogeneous glass that developed limited flow t _xtures before it was quenched. The inclusion was

subsequently recrystallized to secondary minerals such as quartz, feldspar, amphibol e, and chlorite, but the original mineralogy and the

character of the shock-formed heterogeneous glass are still detectable in the distribut on and chemical variations in the secondary mineral

assemblage. Inclusion in Onaping Formation "Black Member" at the type localiw, Dnaping Falls (Highway 144, Dowling Township),

northwestern corner of Sudbury structure (Canada). Sample CSF-66-50-3 (plane- 1,olarized light).



Shock-Metamorphosed Rocks (Impactites)

in Impact Structures

5.1. ROCK TYPES IN THE FINAL

IMPACT STRUCTURE

A wide variety of distinctive rock types-- breccias, melts,

and shock-metamorphosed target rocks -- are produced

during formation of impact structures. The classification

of these complex and diverse rocks is an active and much-

debated activity (see below). However, the general term
impactite is used here as a convenient overall designation

for all rocks affected by, or produced by, the shock waves

and other processes generated by hypervelocity meteorite

impact events.

Different varieties ofimpactites are produced at different

times during the impact process, and they occur in different

locations beneath, within, and around the final impact struc-

ture. The diverse features of impactites reflect, in varying

ways, different aspects of the impact event itself: (1) the

initial shock-wave distribution around the impact point;

(2) the subsequent excavation flow, formation of the tran-
sient crater, and ejection of material from it; (3) the crater

modification processes. The general model described below

will be modified, in actual impact structures, by such indi-

vidual factors as the target lithology, stratigraphy, and the

nature and impact angle of the projectile, but the model pro-

vides a general basis for the identification and classification

ofimpactites (see also Dence, 1968; Grieve, 1991; StOf/qer et
al., 1988).

The basic distribution of shock-wave pressures around

the impact point is largely established by the end of the con-

tact/compression stage. The expanding shock waves deposit

energy continuously in the target rocks through which they

pass, and both their peak pressures and the resulting post-

shock temperatures drop rapidly with distance from the im-

pact point. As the contact/compression stage ends, and the
transient crater begins to form, the zones of shock pressure
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form a series of approximately hemispherical shells around

the impact point, with the peak shock pressure decreasing

rapidly outward (Fig. 3.2).

During the subsequent excavation stage and formation

of the transient crater, virtually all the target rock exposed to

shock pressures of ->25-30 GPa, which now consists of a

mixture of vapor, superheated rock melt, and coherent but

highly shocked target rock, is broken up and accelerated
outward (Dence, 1968; Dence et al., 1977; Grieve and Cintala,

1981). Because the excavation flow lines cut across the origi-

nally hemispherical shock-pressure zones (Fig. 3.4), the ex-

cavated material will consist of a mixture of target rocks

subjected to widely differing shock pressures and showing a

wide range of shock effects. A melt-rich portion flows down-

ward and outward from the center to form a coating along

the floor and walls of the growing crater (Grieve et al., 1977).

The remainder, a mixture of rock fragments and smaller bod-

ies of melt, is impelled outward from the center of the cavity.

Much of this material may be entirely ejected from the tran-
sient crater; some may remain within the crater as a unit of
mixed rubble and melt above the fractured crater floor.

The subcrater rocks beneath the zone of excavation are

subjected to lower shock pressures (-<30 GPa), and the domi-

nant effects produced are shatter cones, brecciation, and in-

place fracturing. As the upper part of the target rocks are

excavated from the transient crater, these rocks are displaced

downward, more or less coherently, to form the floor of the

transient crater and the zone of parautochthonous rocks
beneath it.

The final modification of the transient crater into a simple

or complex impact structure involves several distinct grav-

ity-related processes that influence the distribution of

impactite units: (1) rapid relative movements of large blocks
of subcrater target rocks downward, inward, and upward

along relatively narrow faults; (2) collapse ofoversteepened
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crater walls into the crater cavity; (3) deposition of a minor

amount of ejected material within the crater. The first pro-

cess may create additional breccias and related rock types

beneath the crater. The other two processes produce a large
portion of the crater-fill deposits, which are characterized

by a generally fragmental character and the presence of shock-

metamorphic effects that range from simple fracturing to

complete melting.

5.2. CLASSIFICATION OF IMPACTITES

The definition and classification of impact-produced

materials, both individual rock fragments and large forma-

tions, is a complex, longstanding, and difficult subject (for

details, see St_fller, 1971; Stoflqer et al., 1979; Taylor et al.,

1991; StOfller and Grieve, 1994, 1996; Reimold, 1995). No

attempt will be made here to develop a complete and unani-
mously acceptable system. The simplified system presented

here emphasizes field and petrologic characteristics and is

based, as far as possible, on objective features that are ob-

servable in outcrop, hand specimen, and thin section. This

classification also uses, as much as possible, traditional terms

•already applied to equivalent rocks (e.g., breccias, melt rocks)

formed by common geological processes. Although this sys-

tem is generally consistent with more detailed classifications

(e.g., StOf/ler and Grieve, 1994), it is restricted to terrestrial

rock types produced in single impact events and does not

consider the special complexities ofcratering on other plan-

ets, including the effects of multiple impacts or the absence

of an atmosphere (see Tayloretal., 1991; St_fller and Grieve,
1994, 1996).

The term impactite is used here to designate all rocks

produced during an impact event, including shock-meta-

morphosed (but still recognizable) target rocks (both in place

and as fragments in breccias), breccias, and impact melts.

Under this umbrella, the classification and terminology of

impactite formations are based on a few key features: location

with respect to the crater, source(s) of component materials,

and lithologic characteristics (Table 5.1).
More detailed discriminators, used in other classifications,

include (1) particle sizes and size ranges; (2) relative per-

centages of components in breccias, e.g., ratios of fragments/

matrix, and lithic/glassy fragments; (3) shock-metamorphic

effects in individual breccia fragments (both the shock level

in individual fragments and the range of shock effects in

multiple fragments); and (4) textures and crystallinity of
melt rocks.

In earlier discussions ofimpactites and the cratering pro-
cess (Dence, 1965, 1968; Grieve, 1991), a fundamental and

useful distinction has been made between the parautoch-

thonous rocks beneath the crater floor and the allogenie (or
allochthonous) units (breccias and melt rocks) that fill the

crater (crater-fill units) and form the units of ejecta outside

it (Figs. 3.7 and 3.13). The observed characteristics of these

different rock types are frequently distinctive enough that

they can be tistinguished, even in isolated hand specimens

or outcrops.

The parsutochthonous rocks beneath the crater have

remained re atively coherent during crater formation, al-

though they have been deformed and displaced. These rocks,
which corre., pond to the lower displaced zone of the tran-

sient crater, are subjected to relatively lower shock pres-

sures, and ot served shock-deformation effects are generally

limited to fr: cturing, brecciation, and the formation of shat-

ter cones, athough higher-pressure mineral-deformation

features ma) be developed in a relatively small volume be-

neath the cr lter floor. The allogenie rocks, chiefly breccias

and melts, tt at fill the crater and make up the ejecta beyond

the crater ri n, are characterized by a more diverse lithol-

ogy, a fragnmntal or melted character, and a wide range

of observed ;hock effects. In particular, the crater-fill brec-

cias are a co, aplex mixture of materials with different histo-

ries of shock pressures and transport: unshocked rocks

derived front the distant parts of the crater rim and walls,

more highly shocked and melted fragments excavated from
the transien: crater and redeposited, and large and small

bodies ofim ,act-generated melt.

The folio _ving sections discuss impactites on the basis of

location wi :h respect to the impact structure: (1) sub-

crater: para ttochthonous rocks, cross-cutting allogenic

units, and l,seudotachylite; (2) crater interior." allogenic

crater-fill de posits (lithic breccias, suevite breccias, and im-

pact melt b 'eccias); (3) crater rim region." proximal ejecta

deposits; (4 distant from crater." distal ejecta. A detailed

discussion o : impact melt rocks in these different environ-

ments is pro dded in Chapter 7.

5.3. SUBCRATER ROCKS

5.3.1. For nation Conditions

During f)rmation of the transient crater, the rocks lo-

cated in the, lisplaced zone below the zone of excavation are

driven dow:lward and outward, more or less coherently

(Fig. 3.4), b it they are not completely broken up or exca-

vated. Instea l, they are deformed, thinned, and moved down-
ward and ou :ward as the transient crater forms, and then (in

the central F arts of larger structures) rapidly elevated as the

central uplif : forms (Dence, 1968; Dence et al., 1977; Kieffer
and SimondJ 1980; Grieve and Cintala, 1981; Grieve et al.,

1981; St_e" et al., 1988).

During tl rose movements, the subcrater rocks are gener-
ally displace_ Ias large individual blocks typically tens to hun-

dreds of me ers (or even larger) in size. However, adjacent

regions with n this zone may display little displacement rela-

tive to each other, and original stratigraphy and structural

features may be well preserved within individual blocks. The

term paraut,)chthonous has therefore been applied to these

rocks to indicate their general relative coherence.

The shock pressures imposed on the parautochthonous

rocks vary _idely because of the complex relationship be-
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TABLE 5.1. Criteria for impactite classification.

1. Location with respect to crater (R c = crater radius)

Crater Floor and Subcrater

Parauthochtonous rocks:

target rocks (coherent)
lithic breccias

Allogenic rocks (cross-cutting)
breccia dikes

impact melt dikes

Pseudotachylite

\Vithin Crater

Allogenic rocks:

Crater-fill deposits
(= crater-fill breccias)

(= "breccia lens")
lithic breccias

melt-bearing breccias
suevites

impact melt breccias
(= melt-matrix breccias)

impact melt rocks

Crater Rim and Near-Surface

Aliogenic rocks:

Ejecta:

proximal (<5 R c)

distal (>5 R c)

2. Sources of component materials

Parautochthonous rocks

Approximately in place (local). Original stratigraphy

and structure (largely) preserved.

Allogenic rocks

Derived from single or multiple sources elsewhere.

3. Breccia characteristics

a. Fragment character

b. Fragment lithology

c. Matrix character

Lithic breccia

Rock/mineral fragments only

Monomict (breccia)

Single rock type

Clastic-matrix (breccia)

Discrete fragments

Suevite (breccia)

Melt/glass fragments present

Rock/mineral fragments

Polymict (breccia)

Multiple rock types

Impact melt breccia (= melt-matrix breccia)

Coherent melt (glassy or custalline)

4. Melt rock character (standard geological terms)

Holohyaline (glassy)

Hypocrystalline (mixed glassy/crystalline)

Holocrystalline (completely crystalline)

For grain size, texture, etc., use other standard igneous rock

discriminators, e.g.:

Microcrystalline

Porphyritic

Trachytic, etc.

tween the original shock-wave distribution and the subse-

quent crater modification. Shock pressures in the parau-

tochthonous rocks are therefore highest near the center of

the structure and decrease rapidly outward toward the mar-

gin. Along the floor of the transient cavity (approximately

the floor of the final crater), shock pressures may exceed 25-

30 GPa in the center, decreasing to -<2 GPa at the rim, the

minimum pressure needed to excavate material from the tran-

sient crater (Grieve and Robertson, 1976; Robertson and

Grieve, 1977; Kieffer and Simonds, 1980; Dressler et al., 1998).

Shock pressures also drop offrapidly with increasing depth

below the crater floor. In the center, pressures typically drop

from about 25-30 GPa to a few GPa over distances of less

than a few hundred meters in small structures (Dence et al.,

1977; Grieve etaL, 1981) and over no more than a few kilo-

meters in larger ones (Steer et aL, 1988).

5.3.2. In-Place Shock-Metamorphosed Rocks

The shock effects preserved in the parautochthonous

subcrater rocks therefore reflect a wide range of shock pres-

sures. In a small region immediately below the central part
of the crater floor (i.e., at the base of the excavation zone),
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pressures of 10-30 GPa produce distinctive microscopic
deformation effects in quartz and feldspar, while creating

postshock temperatures of -<300°C. In smaller impact struc-
tures, this zone of identifiably high shock pressures is less

than a few hundred meters thick, partly because of the rapid

decay of the original shock wave with distance from the im-

pact point, and partly because of the subsequent compres-

sion, thinning, and displacement of the subcrater rocks during
transient crater formation (Dence et al., 1977; Grieve and

Cintala, 1981). Beneath this zone, lower shock pressures

(possibly 2-6 GPa) produce distinctive megascopic &for-

mation features (shatter cones) in a deeper region near the
center of the crater.

Shock pressures over most of the zone of parautoch-

thonous rocks are too low (-<2 GPa) to produce distinctive

shock-deformation effects, but they are high enough to ex-

ceed the yield strengths of near-surface crustal rocks (wpi-

tally <1-2 GPa; KiefferandSimondv, 1980). As a result, large
w_lumes of rock beneath the crater floor are broken and

crushed during the early stages of crater formation, produc-

ing units of in-place lithic breccia that generally lack dis-

tinctive high-pressure shock-metamorphic effects. At the

sarae time, and subsequentl> larger fractures that develop in
this zone may be intruded by allogenic materials (rock frag-

ments and/or melt) to form cross-cutting dike-like bodies

(e.g., Lambert, 1981; Bischo/.]and Oskierski, 1987; DTvssler

and Shap_ton, 1997).

The parautochthonous rocks below the crater may also

be strongly affected by subsequent large-scale movements

during the crater modification stage. Such movements may

produce equally striking but different breccias. In large struc-
tures, where modification involves the development of a cen-

tral uplift, deep-seated parautochthonous rocks may be

suddenly uplifted for distances of hundreds of meters to sev-
eral kilometers. This uplift may bring distinctively shocked

rocks (e.g., containing shatter cones) to the surface, where

they' may provide definite evidence for the impact origin of a

large structure. However, these rapid movements may 'also

generate additionN varieties ofbreccias and destroy the origi-

nal spatial relations of the parautochthonous rocks to each

other, making the geology and history of the structure more

dit}]cult to decipher.

Understanding the variety ofbreccias in subcrater rocks

is complicated by severn (actors (e.g., LambeTr, 1981; Bischoff

and Oskierski, 1987; Dressier and Sharpton, 1997). Breccias

may fi)rm at various stages in the cratering process: (1) dur-

ing the initial shock-wave expansion and transient crater
tbrmation; (2) during the subsequent modification of the

transient crater, including (in large structures) movements
associated with the rise of the central uplift and peripheral

collapse around the rim. Even within the brief formation

time of an impact crater, it is possible fi)r multiple genera-
tions of breccia to develop and to produce distinctive cross-

cutting relations, even though the time between one breccia

generation and the next may be measured in seconds or min-

utes (Lambert, 1981; Bischofl'and Oskierski, 1987; Dress/er

and Sharpton, 1997). Another problem is melt formation;

rocks can b,: shock-melted by the initial impact and then

distributed _s melts or melt-bearing breccias throughout the
crater basen ent, but rocks can also be melted subsequently

by friction _enerated during the rapid movements of large
volumes ofl ock involved in crater modification and central

uplift forma :ion.

5.3.3. Lidfic Breccias (Parautochthonous)

Impactit,: breccias that form by the shattering and pul-

verizing oft arget rock essentially in place (autoclastic) typi-

cally form ir 'egular bodies tens to hundreds of meters in size,
which sho_a gradational contacts against areas of similar

hut more o_herent target rocks. These lithie breccias are

composed e _tirely of rock and mineral fragments in a clastic

matrix of sJnaller, but similar, fragments. Fragments tend

to be anguL r to sharp, although fragments of softer rocks

like carbon_ tes and shales may be well rounded. The brec-

cias themse] yes tend to be poorly sorted. The fragments are

derived froln local target rocks, and the breccias may be

monomict ( r polymict, depending on the lithologic variety

present in tl Lenearby target rocks. Distinctive shock-meta-

morphic eff._cts (e.g., PDFs in quartz) are generally absent

in the fragiaents. The breccias show no evidence of sig-

nificant trai sport, and they contain no exotic fragments or

glassy matm ial.
These ro :ks often resemble breccias formed by more nor-

real geologi zal mechanisms such as volcanic explosions or

tectonic mo ,ements, and their identification as impact prod-

ucts is often difficult and uncertain. In general, the subcrater

regions ofi_ lpact structures display highly localized and vari-
able de_brm ation over short distances, a close association of

different kil Ldsofbreccias developed from basement rocks,

and the pre',ence ofallochthonous dike-like bodies of brec-

cia and mel'. This variability in deformation and rock types
contrasts wi th the more uniform or gradational effects pro-

duced by en :logenic mechanisms. Even so, identification of
these rocks as impact breccias can generally not be done

directly, but Jepends on demonstrating their association with

more highly shocked rocks whose impact origin is clear (e.g.,
French eta/. 1997).

5.3.4. Cr_,ss-Cutting (Allogenic) Breccias
Other b _dies of breccia in the subcrater rocks contain

significant _mounts of material that have clearly been intro-

duced into t hem from elsewhere, and they are therefore con-

sidered here as allogenic breccias. These bodies tend to have

more reguli r shapes and to show sharp contacts and clear

cmss-cuttin ,_relations against the subcrater rocks. Such brec-
cias often o :cur as distinctive breccia dikes, which typically

range from .ess than a meter to tens of meters in width and

may be as rruch as a kilometer long (Lambert, 1981; Bkchoff

and Oskiers/i, 1987; DressIer and Sharpton, 1997). These bod-

ies contain fragments of target rock that are angular to
rounded and range in size from <1 mm to several meters.

These breccias tend to be polymiet, with lithologically di-

verse fragments, indicating mixing over distances of at least

several hundred meters. In addition, they frequently contain



significantamountsofallogenicmaterial,suchasfragments
fromevenmoredistantrockunits.Thisallogenicmaterialis
frequentlyderivedfrommorecentralregionsofthecrater,
oftenfromabove the present location of the dike, and it of-

ten consists of distinctive highly shocked rock fragments
or melt.

A wide variety, of such cross-cutting breccias has been

reported from several impact structures (Lambert, 1981;

Bischoff'and Oskierski, 1987; Dressler and Sharpton, 1997):
(1) melt-free, typically polymict, lithic breccias with a clas-

tic matrix; (2) melt-fragment breccias containing fragments
of heterogeneous glass, rocks, and minerals in a clastic ma-

trix; (3) melt-matrix breccias (impact melt breccias), com-

posed of rock and mineral fragments in a matrix of glassy or

crystalline melt; (4) impact melt rocks, composed of glassy
or crystalline melt with few or no inclusions (e.g., Dence,

1971). Many of these dikes are similar to units of breccia or

melt in the crater-fill units above the crater floor, and they
may in fact be continuous with them (e.g., Lambert, 1981).

Subcrater breccia dikes often contain materials (e.g., rock

fragments or melt) that were originally located at higher

stratigraphic levels closer to the impact point, indicating that

the materials in the dikes have been emplaced downward

and/or outward into fractures that opened in the crater floor

during formation and modification of the crater. In many

structures, more than one generation of dikes occurs, with
later ones cutting earlier ones (Lambert, 1981; Dressler and

Sharpton, 1997). These relations indicate that, even during
the brief duration (seconds to minutes) of crater formation

and modification, a variety of distinct breccia types can be
generated and emplaced. However, in the crater environ-

ment, cross-cutting relations between breccia bodies do not

imply the passage of significant amounts of time between

emplacements, a conclusion supported by the fact that the

cross-cutting relations between different types of breccia may
not be consistent from place to place within the whole struc-

ture (Dressier and Sharpton, 1997).

5.3.5. Pseudotachylite

Pseudotachylite is an unusual, much-studied, and long-

debated type of impactite breccia that occurs in the par-
autochthonous rocks of large impact structures (for recent

reviews, see Reimold, 1991, 1995; Spray, 1995). Pseudo-

tachylite is most strikingly developed at two large, ancient
impact structures: Vredefort (South Africa) (Shand, 1916;

Reimold, 1991; Reimold and Colliston, 1994) and Sudbury
(Canada) (Fairbairn andRobson, 1941; Speers, 1957; Dressier,

1984; Thompson and Spray, 1994; Spray and Thompson, 1995),

where it forms striking and extensive exposures (Figs. 5.1

and 5.2). The Vredefort pseudotachylite, first described more

than 80 years ago (Shand, 1916), typically occurs as abun-
dant irregular, anastomosing, and dike-like bodies that

contain numerous large and small rounded inclusions of

target rock set in a dense, aphanitic or crystalline matrix that
is generally black to blackish-green in color. Similar brec-

cias, although developed on a much smaller scale, have been

observed in other impact structures, e.g., Rochechouart
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Fig. 5.1. Pseudotachylite in granitic gneisses. Pseudotachylite
exposure, showing rounded gneiss inclusions from a few centimeters
up to a f_w meters in size in a dense black matrix. The inclusions

show a significant amount of rotation relative to each other. South-
west sector of the Vredefort structure (South Africa) (farm Samaria

484). Black pen on large inclusion in center (arrow) is 15 cm long;
inclusion itself is about 50 cm long. From Reimokl and Colliston
(1994); photograph courtesy ofW. U. Reimold.

(France) (Reimold et al., 1987), Manicouagan (Canada)
(Dressier, 1990), and Slate Islands (Canada) (Dressier and

Sharpton, 1997).

At Sudbury and Vredefort, pseudotachylite is extensive.

Pseudotachylite exposures at Sudbury cover as much as 100-
200 km 2, or a few percent of the total area of the structure.

Individual pseudotachylite bodies can also be large; the larg-

est body so far recognized at Sudbury is more than 11 km

long, more than 400 m wide, and contains discrete fragments
that are hundreds of meters in size (Dressier, 1984). In smaller

impact structures, pseudotachylite bodies are smaller and less

abundant; the material typically occurs as irregular dike-like
bodies less than a meter across.

The individual pseudotachylite bodies in impact struc-

tures are not uniform over long distances and may' change

size and shape radically within meters or tens of meters.

The more elongate dike-like bodies show little or no pre-

ferred orientation in direction. The fragment/matrix ratio in
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Fig. 5.2. Pseudotachylite; metamorphosed, in quartzite. Dark pseudotachylite ("_udbury Breccia") in Mississagi Quartzite on South
Range of Sudbury structure (Canada). Exposure shows large rounded blocks of qua: tzite in a pervasive black matrix (note penetration of
matrix into large quartzite block at lower right) Hammer (upper right) gives scale. Photograph courtesy ofW. Peredcr):

pseudotachylite bodies also varies significantly over short

distances, and some pseudotachylite breccias consist only of

fractured target rocks cut by thin veins of black matrix less
than a few millimeters wide. (The descriptive term "cobweb
breccias" has been used as a convenient field label for such

occurrences.)

Contacts between pseudotachylite bodies and the enclos-

ing target rock are irregular and generally not parallel on

opposite sides. Offsets of wallrock along pseudotachylite
bodies are uncommon, and observed displacements are mi-

nor (e.g., <100 m). In very large pseudotachylite bodies with

large inclusions, the boundary between the breccia body and
the unbrecciated wallrock may not be clear. In such occur-

rences, e.g., at Sudbury, the exact boundaries between brec-

cia and undisturbed wallrock may be difficult to establish

(Dressier, 1984).

Inclusions in pseudotachylite range from submicroscopic
to hundreds of meters in size. They invariably consist of lo-

cal bedrock, and there is generally no evidence for signifi-

cant long-distance (> 100 m) transport of fragments during

formation. The inclusions are irregularly oriented, and out-

crops of the breccia give the strong impression of an overall

tensional or explosive environment (Figs. 5.1 and 5.2), rather
than the narrower compressional/shear environment that is

characteristic of zones of major thrust faulting (Philpotts,

1964; Sibso', _,1975; Spray, 1995). Larger inclusions (>1 cm)

are generall r rounded, while smaller ones tend to be angular
or sharp. C, mtacts between both large and small inclusions

and the sur :ounding matrix are generally sharp. However,

some inclu: ions may be deformed at the rims, forming a

flow structltre that can be observed, both megascopically

and micros :opically, to grade into the surrounding matrix

(Fig. 5.3).

The ma_ rix between larger rock fragments is dense and

coherent, h Lhand specimen, the matrix often shows a con-

choidal or lackly texture on broken surfaces. The color is

commonly 1,lack to blackish green on fresh surfaces, although

the color m ty vary slightly with the host rock involved. The
matrix occt rs in a wide variety' of forms. It may cover large

(meter-size t) areas of inclusion-poor material, or it may form

tiny submil imeter filaments that penetrate bedrock and in-
clusions an :1often terminate within them. In hand speci-

men and th in section, the matrix is commonly structureless

(Fig. 5.4), tut flow-banding is often observed, especially in

thin sectioI_ (Fig. 5.3). This flow-banding may involve in-

clusions thlt have been plastically deformed and possibly

melted (Fi_:. 5.5).

The ma: rix, generally aphanitic in hand specimen, is ex-

tremely fin z-grained and difficult to characterize, even in

thin sectior. In some samples, the matrix shows definite mi-
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Fig. 5.3. Pseudotachylite; flow-banded texture. Pseudotachylite ("Levack breccia") in granitic gneisses from the North Range of the

Sudbury structure (Canada). In thin section, the black pseudotachylite matrix material consists of small irregular rock and mineral

inclusions in a dark microcrystalline to aphanitic groundmass. Numerous inclusions (white) show plastic deformation and alignment to

form a flmv structure; note concentric deformation of the flow structure around larger inclusions (e.g., top right). Thin vertical white lines

are filled hairline fractures in the specimen. Sample CSF-67-53 (plane-polarized light).

Fig. 5.4. Pseudotachylite; structureless matrix. Pseudotachylite from Vredefort (South Africa), showing typical irregular to rounded

inclusions, ranging in size from <100 _tm to several millimeters, in a dark aphanitic groundmass. Inclusions, which are rock and mineral

fragments from granitic gneisses, show sharp contacts with the matrix. In this pseudotachylite sample, the matrix is structureless, and the

inclusions show no deformation, preferred orientation, or other flow structures. Sample AV-81-53 (plane-polarized light).
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Fig. 5.5. Pseudotachylite; extensive melting and flow. Pseudotachylite ("Levack l',reccia") from granitic gneisses in the North Range

of the Sudbury structure (Canada). The pseudotachylite consists of a heterogeneous -nixture of plastically deformed and possibly melted

wallrock fragments (light-colored), mixed with discontinuous areas of more typical pseudotachylite material (dark) consisting of small

rock and mineral fragments in a fine black matrix. Sample CSF-88-2A (plane-pola ized light).

Fig. 5.6. Pseudotachyhte; igneous matrix with microlites. Black pseudotachylite Jeveloped in central granitic gneisses at Vredefort

structure (South Africa), consisting of smalt, irregular, generally rounded rock and m neral fragments in a black, finely crystalline matrix.

Matrix shows igneous flow-banding, expressed by alignment of small feldspar micr, _lites typically 50-100 }am long. The microlites are

often concentrically aligned around larger inclusions. Sample AV81-52A (plane-pol arized light).

crocrystalline melt textures at SEM or microscopic scales

(Fig. 5.6). This characteristic, i.e., a matrix of igneous melt,

has been proposed (but not unanimously accepted) as a dis-

tinguishing feature of pseudotachylite breccias (Spray, 1995).

In other samples, the matrix appears to consist of small frag-

ments in a cttaclastic texture, and distinguishing between

the two type:; is a difficult process with important implica-

tions for both classification and origin (ReimoM, 1995).

Chemical studies ofpseudotachylites (e.g., Dressier, 1984;

Reimold, 1991) have shown that they correspond closely to
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the adjacent host rocks, indicating that they have formed

essentially in place by locally generated cataclastic milling

and/or frictional melting processes.
Controversy and debate over the characteristics, termi-

nology, and origin ofpseudotachylite has existed ever since

the term was first used (Shand, 1916) and continues actively
today (e.g., Spray, 1995; Reimold, 1995). Shand (1916,

pp. 188-189) deliberately coined the word"pseudotachylite"

to distinguish the Vredefort material from tachylite (basaltic
glass) and also from highly crushed and melted materials

formed tectonically along major faults ('flinty crush-rock,"

ultramylonite, hyalomylonite, etc.). Unfortunately, Shand's

term has since been widely applied to the latter type of

material, so that it now designates similar glassy breccias

that are clearly tectonic in origin (Phi]pot& 1964; Sibson,

1975; Reimold, 1995). Such breccias form in entirely differ-
ent environments and are the results of intense deforma-

tion (including frictional melting) of rocks along the linear

trends of faults. They form in a compressional/shear regime,

but they can resemble impact-produced pseudotachylite,
including the presence of melted material in the matrix

(Philpotts, 1964).

Recently, some workers have suggested that impact-

produced pseudotachylites are formed in the same way as

tectonic ones, i.e., by frictional heating during the rapid
movements of late-stage crater development and modifica-

tion (e.g., Thompson andSpray, 1994; Spray, 1995, 1997; Spray
and Thompson, 1995). In this view, impact-produced

pseudotachylites have essentially the same frictional-melt

origin as tectonic ones. One possible way to distinguish be-

tween them may be size. Bodies of tectonic pseudotachylite
tend to be linear and less than a few meters wide (Sibson,

1975; Spray, 1995). Impact-produced pseudotachylites, at

least at Sudbury and Vredefort, form more irregular bodies,
some of which may reach tens to hundreds of meters in size

(Thompson and Spray, 1994; Spray and Thornpson, 1995).

Another problem, even within the study of impact-pro-
duced breccias, is that the term "pseudotachylite" has been

used to designate different types of impact-produced brec-

cias formed at different stages (and possibly by different

mechanisms) during crater formation (Martini, 1991;

Reimold, 1995; Dress/er and Sharpton, 1997). One sugges-

tion (Martini, 1991) is to use the term "type A pseudo-

tachylite" to designate relatively rare, small, glassy veins,

vpically less than a centimeter wide, that contain fragments

in a matrix of melted material, often accompanied by shock-

produced high-pressure mineral polymorphs such as coesite
and stishovite (Martini, 1991). Such veins are believed to

form during the early, higher-pressure, compressive stages
of shock-wave expansion. In contrast, the more abundant,

widespread, and more intensely studied material (called "type
B pseudotachylite") is thought (Martini, 1991) to form later,

during crater modification and central uplift formation, prob-

ably, by friction generated by the rapid movement of large
volumes of target rock below the crater.

Pseudotachylite breccias (especially the more familiar"type

B" variety) are distinctive and recognizable at Vredefort and

Sudbury, but their wider use as unique indicators of impact

is complicated by' several factors. First, since they form be-

low the original crater floor, they are found only in impact

structures that have been deeply enough eroded to expose

target rocks originally located beneath the crater, and

pseudotachylites are usually, restricted to the central-uplift

regions of larger structures. Second, pseudotachylites re-

semble rocks formed by nonimpact processes, and the

distinction is difficult unless definite preserved shock-
metamorphic effects can be fimnd. The current confusion in

terminology and formation mechanisms, combined with the

scarcity of distinctive shock effects in many impact-produced

pseudotachylites, makes it difficult to use pseudotachylites

by themselves as unique indicators of impact structures.

Despite these problems, well-developed pseudotachy-

lites may still be a useful field tool for identi_ing possible

impact structures for more detailed study,. Pseudotachylites

can be widespread in impact structures, and their distinctive

appearance can survive even high-grade metamorphism

(Fig. 5.2). The striking irregular and anastomosing charac-
ter ofpseudotachylite bodies, their rounded inclusions (of-

ten altered at the rims), their development over large areas,

and the frequent absence of a regular shape or of compres-
sional effects typical of similar fault-related breccias make

them a valuable field indicator of a possible impact structure,
and their discovery' should be followed up with an intensive

search fi_r more definite shock effects. In addition, melt-rich

pseudotachylite breccias in established impact structures

have proven valuable for determining the formation ages

of the structures themselves (Spr_{v et aL, 1995; Kelley, and

Spray, 1997).

5.4. CRATER INTERIOR: CRATER-FILL

DEPOSITS (BRECCIAS AND

MELT ROCKS)

5.4.1. Formation Conditions

During the modification stage, material excavated from

various locations in the growing transient crater is deposited
within the final crater to form crater-fill deposits of breccia

and melt rock. These aUogenic units consist of four main

components: (1) material ejected ballistically on steep or

near-vertical trajectories that impacts within the final crater;

(2) large and small bodies of impact melt that do not travel

beyond the rim of the final crater; (3) large and small frag-

ments of unshocked target rock that collapse from the

oversteepened walls and rim of the original transient crater;

(4) ejecta originally deposited near the transient crater rim

and caught up in the subsequent collapse.

As a result of these processes, the final crater is partially
filled with a complex mixture of rock fragments (shocked

and unshocked) together with bodies of impact melt. These

deposits consist mostly of crater-fill breccias, often accom-

panied by discrete units of impact melt rocks. In small, bowl-

shaped, simple craters, the various components tend to be

mLxed together, and the final deposit may, fill the crater to
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about half its depth. [This crater-fill unit is also called the

breccia lens because of its shape (Fig. 3.7).] In larger com-

plex structures, particularly those formed in crystalline tar-

get rocks, the crater-fill rocks typically contain discrete units

of breccias and impact melts that form a large annular de-

posit around the central uplift (Fig. 3.13).

Subsequent to formation of the crater anti the deposition

of impact-produced crater-flU breccias, the structure may

be filled, and the breccias buried, by younger crater-fill sedi-

ments deposited more slowly by the conventional processes

of erosion, transport, and deposition. These sediments not

only preserve the underlying impact-produced breccias, but,

because of their circular outcrop pattern and often anoma-

lous character, they may call attention to previously unsus-

pected impact structures. In this section, the discussion and

the term "crater-fill deposits" are limited only to the impact-

produced breccias that fill the crater during and immedi-

ately after formation and do not include any ordinary

sediments that may also be present.

Many of the individual fragments in the crater-fill de-

posits have been derived from within the zone of crater ex-

cavation (Fig. 3.4) and may be highly shocked. Much of the

target rock within the excavation zone is subjected to rela-

tively high shock pressures of about 5 GPa to >100 GPa.

The lowest pressures in this range are sufficient to shatter

and brecciate the target rocks extensively; at higher pres-

sures, the rocks are deformed and melted as well. Shocked

Fig. 5.7. Crater-flU breccias. Recent drill coring along the south-

ern flank of the Chicxulub structure (Mexico), has recovered impact

breccias and melt rocks only shallowly buried beneath the younger

carbonate sediments. This mosaic shows the sequence of diverse

crater-fill breccias retrieved frona the UNAM-5 drill core located

near the village of Santa Elena in southern Yucat,in, ~ 112 km from

the center of the basin. The core pieces are arranged so that each

represents 10 m of core. The top of the impact sequence (top of

picture) occurs at a depth of -330 Ill below the surface and is

characterized by a 30-m interval of highly vesicular and pulverized

impact melt rock (M). The melt rock horizon is almost completely

altered to clay but contains abundant clasts of the target rock

assemblage. Below this horizon is a varicolored continuous unit of

suevite breccia (SB). As is typical of suevites, this unit has a clastic

matrix containing a substantial proportion of highly shocked and

melted clasts derived from lithologies that were originally deep

within the target assemblage. The upper 50 m of the UNAM-5

suevite (SB1) is characterized by abundant, centimeter-scale clasts

of vesicular melt rock, similar to that of the overlying melt horizon

but less altered.The middle 50 m of the suevite (SB2) is dominated

by larger clasts of shocked to partially melted silicate basement

rock showing abundant evidence of shock deformation. The matrix

of the lower section ofsuevite (SB3) is more melt-rich and contains

a greater proportion of centimeter-scale silicate clasts. Total depth
was reached at the UNAM-5 well while still in the suevite. Coin is

~3 cm in diameter. Photograph courtesy ofV. L. Sharpton.

(/)



rock fragments, derived from this zone and deposited in the

crater-fill breccias, have provided the best evidence for the

impact origin of numerous structures.

The crater-filling process is both rapid and chaotic, and

mixing of the different components is not complete. The

crater-fill deposits therefore contain a variety of distinctive

allogenic breccias and melt rocks (Fig. 5.7). The simple clas-

sification used below is based on (1) fragment lithologies

(lithic vs. melt-fragment breccias; (2) nature of the matrix
(clastic vs. melt-matrix). (For more detailed discussions and

classifications, see, e.g., Stofflereta/., 1979; Tayloretal., 1991;

StOffler and Grieve, 1994, 1996.)

5.4.2. Lithic Breccias (Allogenic)
Melt-flee breccias (lithic breccias) form a common and

distinct lithology in both large and small impact structures

(Figs. 3.7 and 3.13). In small impact structures, e.g., Brent
(Canada) (Dence, 1968; Grieve and Cintala, 1981), lithic brec-

cias may form units hundreds of meters thick that extend

over much of the final crater. At the larger Ries Crater

(Germany), a distinctive allogenic polymict lithic breccia

[the Bunte ("colored") Breccia] occurs beneath the overly-
ing melt-bearing suevite breccias both inside and outside

the crater (H&z, 1982; HOrz etal., 1983), with a sharp con-

tact between the two units. In some impact structures, espe-
cially those formed in carbonate target rocks, lithic breccias

may be the only type of crater-fill material present (Rod@,
1968; Reiff, 1977).

Lithic breccias consist of rock and mineral fragments in a

clastic matrix of finer-grained similar material (Fig. 5.8). The

breccias are poorly sorted; fragment sizes generally range from

<1 mm to tens of meters. Fragments are typically sharp to
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angular in appearance. Unlike the lithic breccias found in

parautochthonous rocks, crater-fill lithic breccias are more

apt to be polymict because their fragments have been de-

rived from a wider region of the original target rocks. Be-
cause most of the material in lithic breccias is derived from

less-shocked regions around the walls and rim of the tran-

sient crater, distinctive shock effects are only rarely observed

in the fragments.

Within the crater-fill deposits, lithic breccias are often

associated, both horizontally and vertically, with units that

contain a melt component as discrete fragments or as a ma-

trix for lithic fragments. Breccias with a few percent or more

of a melt component are regarded as melt-bearing breccias,

but the transition between these breccia types appears con-

tinuous, and no formal boundary has been established. Such

melt-bearing breccias typically form a smaller proportion of

the crater fill, perhaps 10-25 vol%, and the amount of melt

component they contain varies from a few percent to

>90 vol% (e.g., HOrz, 1982; Masaitis, 1983; yon Engdhardt,
1990, 1997).

Two basically different types of melt-bearing breccias can

be distinguished. In melt-fragment breccias (suevites), the

melt component occurs as large (centimeter-sized) discrete

bodies; in melt-matrix breccias (impact melt breccias), the

melt forms a matrix for rock and mineral fragments (Steer
and Grieve, 1994, 1996).

5.4.3. Melt-Fragment Breccias (Allogenic) (Suevites)

Melt-fragment breccias (suevites, pronounced "SWAY-

vites") are composed of discrete fragments of rocks and min-

erals, together with bodies of melt, in a clastic matrix of similar

but finer-grained materials. Many of the rock and mineral

Fig. 5.8. Crater-fill breccia; lithic breccia. Poorly sorted crater-fill lithic breccia composed of angular to sharp fragments of granitic
rocks and constituent minerals (quartz, feldspar, etc.) in a finer clastic matrix. Drill core sample from the Brent Crater (Canada). Photo-
graph courtesy of R. A. E Grieve (cross-polarized light).
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Fig. 5.9. Crater-fill breccia; suevite. Large hand specimen, about 45 cm hmg, of :ypical flesh suevite from the Ries Crater (Germany)

(Otting quarry). The specimen consists of irregular and contorted individual flag nents of glass (dark), which show a roughly parallel

elongation, and crystalline rock fragments (light) in a fine elastic matrix. The g ass fragments, which range up to 5 cm in size, are

composed of a mixture of ruck and mineral fragments in heterogeneous, flow-barn ed glass. Photograph courtesy ofD. St6ffler.

Fig. 5.10. Crater-fall breccia; suevite. Suevite breccia flom Nicholson Lake (Car ada), containing glass i:ragments (dark) with rock and

mineral clasts in a finer fragmental matrix. The glass fragments are heterogeneous mixtures of mineral clasts (light) in dark, flow-banded

glass. Photograph courtesy ofM. R. Dence (plane-polarized light).
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fragments are highly shocked, and these breccias often pro-

vide the most distinctive evidence for a meteorite impact

origin of the structures in which they are found.

The term suevite was originally applied to melt-fragment

breccias from the type occurrence at the Ries Crater (Ger-

many), a relatively young (15 Ma) and well-preserved struc-

ture 24 km across, in which well-exposed suevites and other

impactites have been extensively studied and drilled (for re-

views, see yon Engelhardt et al., 1969; van Engelhardt and

Graup, 1984; yon Engelhardt, 1990, 1997). Suevite breccias
are found both inside the structure (crater suevite or fallback

suevite) and as preserved ejecta deposits (ejecta or fallout
suevite) as far as 40 km from the center of the Ries struc-

ture.
Suevite breccias from the Ries Crater and other im-

pact structures typically consist of large (centimeter-sized)

and smaller glassy bodies (typically 5-15 vol%), together
with rock and mineral clasts in a matrix of finer fragments

(Figs. 5.9 and 5.10). Glass-rich suevites are also known, in
which the glass fragments may make up >50 vol% of the

rock (Masaitis, 1994). Individual rock and glass fragments

typically range from a maximum size of 10-20 cm down to
submillimeter dimensions.

The glassy bodies in the fallout suevite beyond the Ries

Crater rim typically show irregular to contorted shapes and

textures (H#rz, 1965). These bodies are typically heteroge-

neous, consisting ofa polymict mixture of rock and mineral

clasts (frequently highly shocked or partially melted) in a

matrix of glass that may be compositionally heterogeneous

and often shows well-developed flow structure (Fig. 5.11).

At the Ries Crater, the larger (5-20 cm) glassy fragments

in the ejecta deposits outside the structure, called Fladen,

show a grooved and lobate flow structure that is evidence of

aerodynamic sculpturing during their flight through the

atmosphere (H_rz, 1965).These bodies also show brittle frac-

tures developed on landing, implying that they were solid

when they struck the ground. In contrast, glass bodies in the

crater suevite are smaller (normally <5 cm) and lack distinc-

tive sculpturing, implying that they did not travel through

the atmosphere for any significant length of time (Fig. 5.12)

(yon Engelhardt and Graup, 1984; yon Engelhardt, 1990).

Although the Ries suevites are the best-known and most

intensely studied examples of this rock type, impressive
suevite breccias have been recognized in many other impact

structures. However, in many of these structures, erosion has

largely removed the ejecta deposits outside the crater, and
the suevites occur only as crater-fill units, where they are
associated with, and often interbedded with, lithic breccias

and impact-melt rocks. Examples include Brent (Canada)
(Dence, 1965, 1968; Grieve, 1978); Rochechouart (France)

(Kraut and French, 1971); Popigai (Russia) (Masaitis et al.,
1980; Masaitis, 1994); Manson (Iowa) (KoeberlandAnder-

son, 1996a; Koeberletal., 1996b); Gardnos (Norway) (French

et al., 1997); Slate Islands (Canada) (Dressier and Sharpton,
1997); and Roter Kamm (Namibia) (Reimoldet al., 1997a).

The Onaping Formation, a complex and metamorphosed

Fig. 5.11. Crater-fill breccia; suevite; glassy inclusion. Heterogeneous, fragment-rich glassy fragment (Fladen) in suevite breccia from
Lake Mien (Sweden), showing complex, multiple layering with varying amounts of rock and mineral inclusions. The mineral inclusions
are t?qpically sharp to angular and do not show the phenocryst shapes that are typically observed in glassy volcanic rocks. The generally
laminar flow-banding is emphasized by a sharp difference in clast content and by dark streaks that may represent decomposed and melted
opaque minerals. Note that flow-banding in the clast-rich layers (e.g., top) is more highly' contorted. Sample NBS-61-0487 (plane-

polarized light).
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Fig. 5.12. Crater-fillbreccia;suevite. Typical poorly sorted sue-
vite breccia in a core sample from the N6rdlingen deep drill hole
(369.9 m depth), Ries Crater (Germany). The unit contains crys-
talline rock fragments (light-colored) and glassy,fi'agments (Fladen)
(dark) in a fine clastic matrix. Inclusion at upper left contains a
rock fi'agment (core) surrounded by a rim of flow-banded glass.
Specimen is 10 cm wide. Photograph courtesy of H. Newsom.

crater-fill unit at the 1.85-Ga Sudbury (Canada) impact
structure, contains the oldest suevite unit identified so far

(Fig. 5.13) (French, 1968b; Muir and tYredery, 1984;
dvermann, 1994).

Because of their high melt content and the occurrence of
individual glassy bodies, suevite breccias resemble conven-
tional volcanic breccias, and the suevite from the Ries Cra-

ter was considered to be a volcanic tuff for nearly two
centuries. However, suevites differ from volcanic breccias in

several ways, both in hand specimen and microscopically.

Fragments in suevites show no volcanic textures; such typi-
cal volcanic features as feldspar phenocrysts or corroded

quartz phenocusts are absent (Figs. 5.10, 5.11, 5.14, and

5.15). Rock fragments in suevites are not deep-seated volca-

nic xenoliths but are derived entirely from the underlying
shallow target rocks. Suevites often contain cored inclusions,

composite fragments in which a rim of glass is wrapped

around a fragment of basement rock, indicating that both

rock and melt were ejected into the air at the same time

(Figs. 5.16, 5.17, and 5.18). Most convincing is the pres-

ence of unique high-pressure shock-metamorphic effects

(such as PDFs in quartz or the high-pressure minerals coesite

and stishovi te), in rock and mineral inclusions in the suevite.

High-temp .'rature melting effects, e.g., the formation of silica

glass (lecha :elierite) from quartz, may also be present in the

glass fragm :nts in suevite.

Despite heir widespread distribution, suevite breccias are

not found i _all meteorite impact structures. In some cases,

their absem e is probably due to erosion, which has removed

these near-., urface deposits from the structure. However, the

nature ofth ."target rocks also seems important in determin-

ing whethm suevites are formed (KiefferandSimonds, 1980;
Grieve and C",intala, 1992). Suevites have so far been observed

only in imp lct structures formed largely or entirely in crys-
talline silic_ te rocks, possibly because these rocks melt to

produce col_ererent and durable bodies of glass. No suevite
deposits have yet been found in impact structures formed in

carbonate rocks, in which decarbonation and volatile loss,

rather than melting, would be important.

5.4.4. Melt-Matrix Breccias (Impact-Melt Breccias)

Suevites nside the crater are closely associated with a dif-

ferent _pe of melt-bearing breccia: melt-matrix breccias

or impact-r mlt breccias. In these units, the melt occurs, not

as individua[ fragments, but as a matrix that typically makes

up 25-75 w 1% of the rock and may range from glassy mate-

rial to corn t letely crystalline igneous rock. The fragments,

which cons st of target rocks and minerals, are frequently
shocked or inelted.

Impact-E aelt breccias form distinct bodies of widely vary-

ing size, fro m small glassy inclusions in suevite breccias to
distinct dike -like and sill-like units tens to hundreds of meters

thick. As th._ melt component increases, impact-melt brec-

cias grade ir to impact melt rocks (see Chapter 6), in which

the melt cot lponent is dominant and the included fragments

are minor o_ entirely absent. These rocks often have the ap-
pearance of :onventional igneous rocks.

5.5. CLATER RIM ZONE AND PROXIMAL

EJECTA DEPOSITS

The regi m near the rim of the transient crater is sub-

jected to rel: ttively low shock pressures (typically <1-2 GPa

in smaller sl ructures; Fig. 3.4) (KieJfer and Simonds, 1980).

These press _res are high enough to fracture and brecciate

target rocks 3ut are too low to produce unique shock-defor-
mation feat, tres in them. The dominant effects in this re-

gion are relal ed to the excavation of the crater and the ejection

of material f :om it. In simple craters, which are only slightly
larger than t ae original transient crater, the rim is character-

ized by stru_ tural uplift (and even overturning) of the target
rocks that o :curs during development of the original tran-

sient crater iFig. 3.3). Even though much of this original

transient crater rim may collapse into the final crater during

modificatim _,significant uplift may be preserved, especially

in smaller ard younger craters (e.g., Shoemaker, 1963; Roddy
et al., 1975; Roddy, 1978). Such rim uplift and overturn-
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Fig. 5.13. Crater-fill breccia; suevite, metamorphosed. Typical exposure of Onaping Formation "Black Member," showing centimeter-

sized fragments of rock fragments and contorted recrystallized glass), inclusions in a black fragmental matrix. Despite color differences,

the unit has a strong resemblance to fresh suevite from the Ries Crater (Germany) (see Fig. 5.9). Exposure located at "Black Member"

_'pe locality at Onaping Falls (Highway 144, DowlingTownship) in the northwestern part of the Sudbury structure (Canada). Diameter

of coin near large glassy inclusion is about 2 cm. Photograph courtesy of J. Guy-Bray.

Fig. 5.14. Crater-fill breccia; suevite, heterogeneous glasses. Complex heterogeneous glassy breccia from \Vest Clearwater Lake

(Canada), composed of distinct areas of light- and dark-colored mixed glasses, which show short-range turbulent flow and mixing.

The glassy areas contain abundant small rock and mineral fragments. Photograph courtesy ofM. R. Dence (plane-polarized light).
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0.5 mm

Fig. 5.15. Crater-fill breccia; suevite, metamorphosed. Heterogeneous glass), b eccia consisting of fragments of recrystallized glass,

together with rock and nfineral fragments, in a fine opaque carbon-bearing matrLx Despite greenschist-levet metamorphism, the glassy

fragments still preserve original melt textures such as flow banding and vesicles (n)w filled with chlorite; gray). Many of the fragments

display sharp crosscutting fractures, indicating that the)' were cool and brittle wt en deposited. The rock and mineral clasts represent

broken basement (target) rocks; no typical w_lc,mic textures (phenocrysts, etc.) are _bserved. Discrete fragments as small as 5 lain across

can be distinguished in the opaque matrix. Onaping Formation "Black Member,' from t)"pe locality at Onaping Falls (Highway 144,

Dowling Township), northwestern corner of Sudbury structure (Canada). Sample CSF 66-36-1 (plane-polarized light).

Fig. 5.16. Crater-fill breccia; suevite,"cored" inclusion. Large flow-banded frag nent (about 15 cm long) from a larger glass)' inclusion

in the suevite unit of the Pies Crater (Germany) (Bollstadt quarry). The specimen is a composite or "cored" inclusion containing a large

block of shocked and fractured c_'stalline rock (light) surrounded by dark, flow-b reded glass. Photograph courtesy" of F. H6rz.
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Fig. 5.17. Crater-fill breccia; suevite, "cored" inclusion. Composite (cored) inclusion in Onaping Formation "Black Member" in

northwestern corner of Sudbury structure (Canada). Inclusiun consists of a core fragment of crystalline granitic rock (Iight-colored)

surrounded by flow-banded glass), material, now recrystallized. Similar inclusions are observed in fresher suevite deposits, e.g., at the Ries

Crater (Germany) (see Figs. 5.12 and 5.16). A separate angular granitic fragment appears at lower right. Coin at left of inclusion is about

2 cm in diameter. Exposure located at "Black Member" Upe lucality at Onaping Falls (Highway 144, Dowling Township). Photograph

courtesy of J. Guy-Bray.

Fig. 5.18. Crater-fillbreccia; suevite, "cored" inclusion. Composite rock fragment in metamorphosed suevite unit. The fragment con-

tains a core of fine-grained granitic basement rock surrounded by a rim ofmicrocrystalline recrystallized glass. The fragment is associated

with smaller individual clasts of glassy material and rock and mineral fragments in a black, opaque, carbon-bearing matrix. Onaping

Formation "Black Member," from t?_pe locality at Onaping Falls (Highway 144, Dowling Township), northwestern corner of Sudbury

structure (Canada). Sample CSF-66-36-2 (cross-polarized light).
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ing are only rarely observed in volcanic explosion structures

such as maars and diatremes, and the presence of such rim

deformation provides a strong indication of an impact origin
for a structure.

In a newly formed crater the rim and the surrounding

region are generally covered with allogenic ejecta ejected from

the growing transient crater (Melosh, 1989; Chapter 6).Two

kinds ofejecta deposits can be distinguished: those depos-

ited near the crater (proximal ejecta) and those distant from

the crater (distal ejecta).

Most of the material ejected beyond the crater rim is de-

posited near the crater (Melosh, 1989, p. 90). In terms of
crater radius (R o the distance from the center of the crater

to the final rim), approximately half the ejecta is deposited
within 2 R, from the center (or 1 R c from the rim) to form a

continuous ejecta blanket that may be tens to hundreds of

meters thick, depending on the size of the crater. At greater
distances, the ejecta unit becomes thinner and increasingly

discontinuous; most of the ejecta (>90%) is deposited within

about 5 R c (This value may serve as an arbitrary boundary

between proximal and distal ejecta.) Because many of the

fragments in the ejecta deposits were originally close to the

impact point, they are often distinctively shocked and melted.

Ejecta blankets, where they are preserved, may therefore

provide the best and most accessible evidence for an impact
origin of the structure.

Ejecta deposits around impact craters are not homoge-

neous, but are made up of distinct lithologic units derived

from different regions of the transient crater and transported

by different mechanisms to the site of deposition. Mixing
during the ejection and deposition process is not complete,

and the ejecta deposits that surround a crater contain the

same diversity' of rock types that are found as crater fall within

the structure: lithic breccias, suevites, and impact melt rocks.

In large impact structures, the ejecta deposits preserved out-

side the crater contain a recognizable sequence of different

lithologies. The sequence at the Ries Crater (Germany) (see

yon Engelbardt, 1990, 1997, and references therein) contains

a lower unit of polymict lithic melt-free breccia (Bunte Brec-

cia) overlain by melt-bearing breccia (suevite). Some of the

ejecta at the lades also occurs as large (tens to hundreds of
meters in size) limestone blocks ejected intact from the cra-

ter and skidded for many kilometers across the surrounding
ground surface (yon Engelhardt, 1990, pp. 264-265).

In impact structures formed on land, the near-surface

regions are quickly removed by erosion, and the distinctive

rim uplift and ejecta deposits are observed only at relatively

young structures such as the Barringer Meteor Crater (Ari-

zona) (age 50 ka) (Shoemaker, 1963) and the Ries Crater

(Germany) (age 15 Ma) (von Engelhardt, 1990). At older

structures (e.g., Dence, 1965, 1968), distinctively shocked

rocks tend to be preserved in only two areas: in the target
rocks immediately beneath the crater floor, and in the brec-

cia and melt deposits that fill the crater itself.

5.6. DISTAL EJECTA

Althoug 1 most of the material (about 90 vol%) ejected

from the cr iter is deposited relatively close (<5 Re) to the

crater (Mel_sh, 1989, p. 90), a significant amount (about

10 vol%) m: ,y travel to even greater distances (>5 Re) to form

deposits of, listal ejecta. Where an atmosphere is present, as

in terrestria impact events, a combination of disruption of

the atmospl Lereby the impact fireball, ballistic ejection from

the crater, .'nd subsequent atmospheric transport can dis-

tribute the _mallet ejecta particles (typically -<1 mm) to re-
gional or men global distances (dlvarez et al., 1995). The

resulting de Josits, usually less than a few centimeters thick,

may contai, distinctive evidence for impact: shocked rock

and mineral fragments, distinctive chemical and isotopic sig-

natures, ant unusual glassy objects. It has thus become pos-
sible to reccgnize debris from a given impact structure over

a large area )fEarth, and even to establish the existence of a

major impa :t event from a globally distributed ejecta layer
before the s :ructure itself could be located.

Althoug 1 few layers of distal ejecta have been identified,

they have lzeen critical to recognizing large impact struc-

tures and & termining their age. Coarse ejecta (millimeter-

to centimet, :r-sized fragments) from the Acraman structure

(Australia) D = 90 km) has been recognized as a discrete
layer severa centimeters thick at distances of 300-400 km

from the si e (Gostin et al., 1986; Williams, 1986). Ejecta
from the iV.anson structure (Iowa) (D = 36 km) has been

recognized nore than 250 km away (Izett et al., 1993). The

most striki_ g and best-known example of distal ejecta is the
thin layer o: "material ejected from the Chicxulub structure
(Mexico) an 21distributed worldwide to form the K/T bound-

ary layer (At,varez et al., 1980; papers in Sharpton and Ward,

1990, and ir Ryderetal., 1996).The occurrence in this layer

of shocked ,[uartz grains and small spherules of melted tar-

get rock, ac :ompanied by an anomalously high content of

the element iridium (derived from the projectile), provided

conclusive _vidence that a large meteorite impact had oc-
curred at th '.end of the Cretaceous Period, even before the

Chicxulub i aapact structure itself was identified. The layer

also provide_ Ikey geochemical and geochronological evidence
to demonstr ate that the Chicxulub structure was identical in

age to the K/T boundary and that it was also the source for

the global ej ecta layer itself.

Generall 1,ejecta found at greater distances from the cra-

ter displays t higher level of shock effects, and much distal

ejecta consists of small fragments of melted target rock. One

peculiar and much-studied variety of distal ejecta is tektites
and microti ktites, small (centimeter- to millimeter-sized)

bodies ofpt re glass that have been ejected from a few im-

pact structu, es and spread over areas (strewnfields) that may

be thousand s of kilometers in extent (see Chapter 6).
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6.1. FORMATION CONDITIONS

One of the most unique features of the impact process is

the virtually instantaneous melting of significant amounts

of target rock, followed by the rapid distribution of this im-

pact melt throughout the resulting crater to produce a vari-

ety of unusual crystalline and glassy igneous rocks. All

impact-generated shock waves deposit some of their origi-

nal energy as heat within the target rocks through which

they pass. At relatively low shock pressures (-<40 GPa), the
resulting postshock temperature rise is moderate (-<500°C),

or below the melting points of most rock-forming minerals
(Table 4.2). At higher pressure (~40-50 GPa), the higher

temperatures produce significant melting, and at pressures
(->60 GPa) near the impact point, the shock waves deposit

sufficient thermal energy to completely melt a large volume

of target rock. The subsequent dynamic processes of crater

formation spread this impact melt within and outside the

crater as small bodies of glass in breccias and as larger bodies

of crystalline igneous rock of varying size, shape, and ap-

pearance (Dence, 1971; Grieve et al., 1977, 1991b; Grieve

and Cintala, 1992; Schuravtz et al., 1994). In large (D >

25 kin) impact structures, especially those produced in crys-

talline igneous and metamorphic rocks, tens to hundreds of

cubic kilometers of impact melt may be produced, and im-

pact melt units can become a significant part of the geology
of the structure (Fig. 6.1).

The formation of impact melts has no counterpart in other

geological processes, and many details of how impact melts

are formed, moved, and emplaced are still not clear. How-

ever, some general features of the process and its geological

consequences have been outlined by combining theoretical

models with geological studies of impact structures (Dence,
1971; Dence et al., 1977; Grieve, 1978; Grieve et al., 1977,

1981, 1991b; Grieve and Cintala, 1992; Cintala and Grieve,

1998). During the initial stages of an impact event at typi-

cal cosmic encounter velocities, postshock temperatures
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->2000°C are produced through a large volume of target rock

close to the impact point (Fig. 3.2) (O'Keefe anddhrens, 1975,
1977;/threns and O'Keefe, 1977; Melosh, 1989, pp. 63-64
and 122-123).

These postshock temperatures are far above the normal

melting points of the target rocks and their constituent min-

erals. As a result, when the shock wave has passed and the

pressure returns to normal, spontaneous and complete melt-

ing occurs almost instantaneously throughout a large and

approximately spherical volume of target rock. The shock

waves that have melted the target rock also provide kinetic

energy to accelerate the newly formed melt, which immedi-

ately becomes part of the overall flow and movement of tar-

get rock that opens up the transient crater (Fig. 6.2) (Dence,
1971; Grieve et al., 1981; Grieve, 1987).

A special kind of melt formation and ejection may occur

during the earliest stages of contact in small regions near the
interface between the projectile and the target (Fig. 3.1). In

this region, extremely high shock pressures are generated,

producing correspondingly high temperatures (>5000°C) in

the shocked material. The resulting melted and vaporized

material may then be ejected as high-velocity jets, at speeds

that may exceed the original impact veloci_' (Me/ash, 1989,

pp. 51-53). Depending on the amount of atmospheric re-

sistance encountered, the jets can carry material to signifi-

cant distances, forming deposits of small spherules or larger

glassy bodies (Mdosh and Vickery, 1991). However, such ma-

terial, which may be a mixture of vaporized projectile and

target rock, is relatively minor in comparison to the large

volume of melt generated subsequently within the crater.

This larger melt volume, initially located near the center
of the structure, is driven downward and outward toward

the floor of the developing transient crater at initial veloci-

ties of a few kilometers per second (Fig. 6.2). When the
melt reaches the transient crater floor, it turns and moves

upward and outward along the floor (Grieve etal., 1977). At

this point, the movement of the melt becomes slower and
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Fig. 6.1. Impact melt rock; cliffwith columnarjointing. Exposed erosional rein lant of annular impact melt sheet at Mistastin Lake

(Canada), forming a steep cliffabout 80 In high. The melt unit strongly resembles e: posures of normal endogenic igneous rocks and even

shows two tiers of typical columnar jointing. Photograph courtesy of R. A. IV.Grie ,e.

more complicated. The moving melt begins to incorporate

cooler inclusions from the floor and wall of the transient

crater. As these inclusions are assimilated, the melt cools rap-

idly and may subdivide into distinct units ofclast-rich im-

pact melt breccia and clast-poor impact melt (Simonds eta/.,

1976, 1978a,b). Some of the outward-flowing melt might

possibly reach the original ground surface, escape from the

crater, and spread out over the area surrounding the crater

rim like a lava flow before it solidifies. Such extrusive impact

melt bodies may exist around a few well-preserved terres-

trial impact structures (e.g., French etal., 1970), but the iden-

tifications so far are uncertain and such units will not be

preserved in older, deeply eroded structures.

The only impact melt definitely _lown to be ejected from

the crater occurs in small (<50 cm) objects composed of rock

and mineral clasts in a matrix of rapidly quenched glass; these

melt bodies (Fladen) form an important component of the

melt-fragment breccias (suevites) deposited in and around

the final crater. Most of the coherent melt layer remains

within the evolving crater and finally comes to rest on top of

breccias that have already partially filled the crater. Geo-

logical support for this model comes from the observed con-

centration of melt-rich materials in the upper part of the

crater-fill kreccia deposits at both large and small impact

structures ( Dence, 1968; Grieve, 1978; Grieve et al., 1977).

In small impact structures, e.g., Brent (Canada), most of

the preserv, :d impact melt occurs as small bodies in suevites

and as the matrixes of clast-rich breccias. In larger struc-

tures, whet : more melt is produced, e.g., Clearwater Lakes

(Canada) and Manicouagan (Canada), the melt may also

form thick coherent bodies that extend over much of the

interior oft he final structure (Fig. 6.1) (Dence, 1971; Grieve

eta/., 1977) In the past, these occurrences of apparently nor-

mal volcani ."or intrusive igneous rocks were frequently cited

as evidence for the internal origin of many structures now

accepted as the results of meteorite impact. However, unlike

norraal ign, :ous rocks, which originate by equilibrium melt-

ing deep wi -hin the Earth and then rise slowly to the surface

as molten i aagma, impact melts are produced by the rapid

and cocaph te melting of near-surfiace target rocks directly

beneath th .' impact site itself. This different origin leaves

distinctive features in the resulting impact melts, such as

shock-metamorphosed inclusions, evidence of extremely high

temperatur_ :s, unusual bulk chemical compositions, or chemi-

cal signatmes from the projectile itself. It is therefore pos-

sible to dist nguish impact melts from normal igneous rocks.
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6.2. IMPACT MELT VOLUMES

AND CRATER SIZE

Impact melt is a significant component of the rocks pro-

duced by the cratering event, especially in large impact struc-

tures. Theoretical estimates suggest that, at typical impact

velocities of 15-30 km/s, as much as 40-60% of the total

kinetic energy of the impacting projectile is transferred into

the target rocks as thermal energy. Even though not all this

energy is effective in melting the target, the volume of im-

pact melt produced may still be 10 to >100× the volume of

the original pmiectile (depending mostly on the projectile's

impact velocity ) ( O'Keefb anddhtvns, 1975, 1977;dbrens and

O'Keefe, 1977; Melosh, 1989, pp. 63-64 and 122-123).

Additional studies (Grieve' and Cintala, 1992) suggest that

the volume of impact melt produced (Vm, in cubic kilo-

meters) increases expontentially with crater diameter (D, in

kilometers) and that the two quantities can be related by an

equation of the form

V m = cD d

Application of theoretical and experimental cratering

studies suggests approximate values of c = 0.0004 and D =

3.4 for the dataset used (Grieve amt Cinta/a, 1992).

This relation indicates that large impact events (which

fi_rm large craters) produce proportionately larger volumes

of impact melt (Dence, 1971; Grieve amt Cintala, 1992), but

the available data (both theoretical and geological) are not

precise enough for detailed estimates. Theoretical problems

include significant uncertainties in various experimental

parameters, as well as the difficulty of extrapolating the re-

sults of small laboratory experiments to the conditions of

large impact events.

There are also several geological complications. Target

rock compositions and physical properties are apparently

important. Some large impact structures [e.g., Ries Crater

(Germany)] contain little impact melt. This anomaly is ex-

plained (Kieffi'r and Simomtq 1980; Grieve and Cintala, 1992)

by the observation that the target rocks in these meh-poor

structures contain significant amounts of sedimentary rocks.

Unlike crystalline rocks, sedimentary rocks may be both po-

rous (e.g., sandstones) and volatile-rich (limestone, dolomites,

and evaporites). Although impacts into porous rocks tend to

produce proportionately more melt than impacts into denser

crystalline rocks (Kieff'en 1971; KieffSr and Simonds, 1980;

StgflleT; 1984), much of the melted material may form small

vesicular aggregates that are ejected from the crater with a

plume of expanding volatiles (Kieff'er and Simonds 1980).

Crater size has another effect: Relatively more melt is eiected

Fig. 6.2. Impact melt; formation and movement through transient crater. Cross-section diagram through a transient crater, showing

formation and subsequent movement of impact melt. Concentric circles around the original impact point show isobars of peak shock

pressures (right side, "Compression," in GPa) and isotherms of postshock temperatures (left side, "Excavation"). The small zone of

pressures >200 GPa close to the impact point is briefly occupied by a mixed projectile-target vapor; the original body of impact melt

forms immediately outward from this zone at pressures >60 GPa. Kinetic energ); imparted to the melt volume by shock waves, drives the

originally hemispherical volmne of melt downward and outward with particle velocities (Up) >1 km/s. \Vhen the melt reaches the floor of

the excavation zone, it turns and flows upward along the developing transient crater floor. During this stage, the melt can incorporate

xenoliths of shocked and unshocked rocks (rom the crater floor and walls, and it may separate into inclusion-free, inclusion-poor, and

inclusion-rich varieties. Some flowing melt may even reach the ground surface and spread out beyond the crater rim. During the subsequent

crater modification stage, the melt located at high levels on the floor near the rim slmnps back into the crater to form disseminated small

bodies and larger la}vrs of melt toward or at the top of the crater-fill breccias. (Modified from Grieve et a/., 1977, Fig. 5.)
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from smaller craters than from larger ones, and the ejected

melt is less apt to be preserved in geologically old structures.

Additional geological uncertainties include (1) difficulties

in estimating the original volume of eroded impact melts in
older structures and (2) uncertainties in estimating melt vol-

umes in poorly exposed structures or in buried structures

explored only by drilling.
Because of these uncertainties, impact melt volumes mea-

sured in actual impact structures differ from the calculated

values by factors of as much as 2-7x, and calculated impact

melt volumes generally exceed measured ones (Grieve and

Cintala, 1992, Fig. 3). These differences are reasonable in

view of the theoretical and experimental uncertainties in-

volved, and the model is good enough fi_r general predic-

tions. For instance, the model clearly shows that the volume

of impact melt fbrmed in small craters (diameter <5 km)

is relatively small (-<1 km3). Even so, this melt is important.

It generally occurs as distinctive glass fragments in breccias

deposited in and around the crater, and these fragments

are often easily identified as impact products. However,
because melt volume increases even more rapidly than the

cube of crater diameter, impacts of larger projectiles (D = 1-

10 km), which produce craters 10-200 km across, can gen-

erate 10 to >1000 km 3 of impact melt. Such volumes are

similar to those of many units of internally generated igne-

ous rocks, and it is not surprising that many large impact

structures were originally identified as the resttlts of m_or

endogenic igneous events.

6.3. IMPACT MELT VARIETIES IN THE

NEAR-CRATER ENVIRONMENT

Virtmflly all (>99 vol%) the melt fi_rmed in an impact

event is deposited within the resulting crater or within a

few crater radii beyond the rim (Dence, 1971; Grieve et al.,
1977; Grieve and Cintala, 1992). In these locations, the

impact melt occurs in a variety of forms: (1) discrete, small
(millimeter- to ccntimeter-sized), irregular, generally glassy

objects in suevite crater-fill breccias or in nearby eiecta de-

posits around the crater; (2) glassy or crystalline matrices of

clast-bearing _dlogenic breccias (impact melt breccias) in the

crater-fill deposits; (3) larger bodies of more slowly cooled

igneous rock that occur as sills within the crater-fill deposits

or intrude the subcrater rocks as dikes. In large structures,

these latter bodies may be tens to hundreds of cubic kilome-
ters in volume.

6.3.1. Small Glassy Bodies

Much of the impact melt, especially in small structures,
occurs as individual discrete bodies in the allogenic breccia

deposits in and immediatcly around thc crater. In thcsc units,

thc impact melt lbrms small, discrete, irregular bodies typi-

cally a few millimeters to about 20 cm in sizc, which may

superficially resemble volcanic lapilli and bombs in size and

shapc. Thc material from the Ries Crater (Germany), which
includes irregular, flattened, and aerodynamically sculptured

bodies (Fla ten), is perhaps the best-known and most-stud-

ied example of this type of material (H6rz, 1965; yon

Enge/bardt , t al., 1969; yon Engelhardt and Graup, 1984; yon

Engelhardt, 1990, 1997). However, similar objects occur in
suevite bre(eias from numerous other impact structures.

These sr vail melt bodies consist of rock and mineral frag-

ments in a natrix of fresh or altered flow-banded glass. In

thin section s, the rock and mineral fragments are frequently

angular to _harp in outline, and their shapes indicate that

the), are br,_ken clasts derived from the target rocks. The

fragments tlso show a range of shock-metamorphic ef-

fects: fract_ tring, development of PDFs in quartz and feld-

spar, diapl(ctic glasses, and even incipient melting. The

fragments ( ccur in a matrix of glass (often brownish in thin

section) wh! ch shows distinctive turbulent and heterogeneous

flow struct_lre, with compositionally different flow zones
(Figs. 6.3, {.4, and 6.5).

These ir lpact glass bodies also show evidence of shock-

produced t_mperatures far above those of conventional ig-

neous proce _ses.The most typical high-temperature indicator

is the melti _g or decomposition of inclusions of refractory

minerals dc rived from the target rocks (particularly quartz,

zircon, and sphene), for which temperatures of >1400 °-

1800°C are equired (Figs. 6.6, 6.7, and 6.8) (ElGoresy, 1965,

1968; Frem _, 1972, pp. 23-24). The most common indica-

tor of high temperatures in these glasses is the presence of

silica glass (Iechatelierite), which has been formed from origi-

nal quartz g rains at temperatures above 1713°C. This lecha-

telierite oft, n mixes incompletely with the other melt before

cooling, pri ducing clear streaks (schlieren) of pure silica in
the glass (F ig. 6.3).

Small b(,dies of impact glass can be distinguished from

normal w_l, anic products (e.g., obsidian, lapilli, and volca-

nic bombs) by their nonvolcanic features, evidence of ex-

tremely hig _ temperatures (e.g., lechatelierite), and textures

indicating s :rong disequilibrium [e.g., unabsorbed streaks or

layers ofpu re silica (lechatelierite) in the glass]. Because of

its high fort nation temperature, the presence oflechatelierite

in apparent y "volcanic" glasses is an especially reliable indi-

cator that hey are actually impact-produced melt rocks.

(Lechatelie dte is not found in any other natural materials

except/hlgz, qtes, which are thin tube-like structures produced

by the fusi:m of soil by lightning strikes. In particular,

lechatelieri e is not found in internally generated igneous
rocks.) In a :tdition, the rock and mineral inclusions in im-

pact glasses tire derived from the target rocks and not from

cogenetic i_;neous rocks. These inclusions are broken frag-
ments (cla_,ts), not phenocrysts, and a small percentage of

them (typi, ally ~1%) display definite shock-metamorphic

features: P 9Fs, isotropization, and high-temperature melt-

ing. Such casts provide additional evidence for the impact

origin ofth e melt rock.

6.3.2. Impact Melt Breccias

Large b_ ,dies of impact melt, which generally remain in-

side the cra :er, cool more slowly and may flow for significant

distances bc fore solidi_ing (Dence, 1971; Grieve et al., 1977).



Impact Melts 83

Fig. 6.3. Impact melt rock; Fladen (glass) with schlieren. Brownish, heterogeneous, flow-banded glass of granodioritic composition

from glassy fragment (Fladen) in suevite breccia. The fragment contains spherical vesicles and irregular mineral fragments, mostly quartz.

The matrix glass shows well-deve]oped, locally laminar flow structure with discrete bands and streaks (schlieren) of high-silica glass

(clear). Pure quartz glass (lechatelierite) also occurs as fluidal inclusions (clear; upper left), indicating shock melting of original quartz

grains at temperatures above 1700°C. From suevite in Otting quarr); Ries Crater (Germany). Photo courtesy of W. yon Engelhardt
(plane-polarized light).

Fig. 6.4. Impact melt rock; Fladen (glass) with schlieren. Dense, heterogeneous, flow-banded glass from fragment in suevite breccia.

Locally laminar flow-banding contains streaks and bands of quartz glass (lechatelierite) (clear) formed by shock mehing of original quartz

grains at temperatures above 1700°C. Part of an included quartz grain (dark) appears at top, with flow-banding distorted around it.

A filled vesicle (white) appears at bottom. Drill core sample from West Clearwater Lake (Canada). Photo courtesy of M. R. Dence.
Sample DCW-4A-63-170.7 (plane-polarized light).
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Fig. 6.5. Impact melt rock; recrystaUized Fladen (glass) with flow-banding. Retry tallized glass), fragment from metamorphosed suevite

breccia, containing rock and mineral clasts in heterogeneous, flow-banded recrysta] Lized glassy, material. Despite postirnpact greenschist

metamorphism, original heterogeneous flow banding is still preserved by the distrit ution of secondary minerals, chiefly quartz, feldspar,

chlorite, and amphibole. The mineral clasts ale rounded, angular, or irregular, a1 d the), lack the phenocryst shapes typical of glassy'

volcanic rocks. Quartz clasts (e.g., at top) rarely, contain preserved indistinct PI) :s, indicating that shock-deformation, melting, and

mixing of rock fragments and melt were part oflhe same process. Sample f¥om Ona 1,ing Formation, "Black Member," Sudbury (Canada).

Sample CSF-67-64 (plane-polarized light).

Fig. 6.6. High-temperature effects; melted (decomposed) zircon. A single grain of zircon (ZrSiO4) from preimpact target rocks,

incorporated into a fragment of high-temperature impact-melt glass ejected from tile Aouetloul Crater (Mauritania). The original zircon

is now melted and decomposed to a granular aggregate of the mineral baddeleyite (ZrO 2) (small bright dots) and silica glass. This decom-

position occurs experimentally only at temperatures above 1750°C, and the presence of this reaction is clear evidence of high temperatures

associated with meteorite impact events. Reflected light photomicrograph; courtesy of A. El Goresy.
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Fig. 6.7. High-temperature effects; melted (decomposed)

zircon. Small rounded zircon grain, incorporated into impact-

melt glass from preimpact target rocks. The rim of the grain

shows partial decomposition of the zircon (ZrSiO4) to badde-

leyite (ZrO2) (white, strongly reflecting), while the core of the

grain consists of unaltered zircon (gray). From a fragment of

impact glass from M6ttingen, Ries Crater (Germany). Refected

light photomicrograph; courtesy of A. E1 Goresy.

0.05 mm

Fig. 6.8. High-temperature effects; melted sphene. Shocked and recrystallized quartzofeldspathic inclusion in metamorphosed suevite

breccia. Original quartz (gra); higher relief; left) is largely unchanged. The grains are irregularly fractured and occasionally show decorated

PDFs, e.g., two indistinct sets in the grain at upper left. Feldspar (clear, lower relief) is recrystallized. The clear needle-like minerals along

the grain boundaries are probably secondary' amphibole. Local melting and short-range flow are indicated by scattered dark flow-banded

areas, possibly inw_lving original opaque minerals. A small sphene grain (right center; arrow) (melting point ~1400°C) shows incipient

melting, indicating unusually high localized temperatures. The right half of the grain preserves the original euhedral shape, while the left

half has been converted into a spray of dark fine droplets that are being dispersed through the surrounding (plastic?) feldspar. Preservation

of hail the sphene grain indicates that the melting was both highly localized and rapidly quenched, as is 9,pical for shock-metamorphic

reactions. Granitic inclusion in Onaping Formation "Black Member," Sudbury (Canada). Sample CSF-67-72 (plane-polarized light).
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During movement and cooling, the melt may mix with colder

rock fragments, both shocked and unshocked. Where these

fragments are abundant (e.g., >50-75 vol% of the total rock),

their introduction causes the melt to cool and solidiff rap-

idly. The resulting rock is an impact melt breccia (or melt-

matrix breccia) containing rock and mineral fragments in an

igneous matrix of glassy or crystalline impact melt (Figs. 6.9

and 6.10). Impact melt breccias occur in a wide range of

crater sizes and locations. They form small irregular pods

and lenses a few meters to tens of meters in size, within larger

units of suevites or other crater-fill breccias. They may also

form the marginal zones of larger bodies of clast-poor or

clast-free impact melt. In these associations, the clast-bear-

ing impact melt breccia may grade continuously into clast-

poor impact melt (Simonds et al., 1976, 1978a).

6.3.3. Large Crystalline Bodies (Dikes and Sills)

The formation of larger impact structures may generate
several hundred to a few thousand cubic kilometers of im-

pact melt, which collects within the crater to form large,

slowly cooled, and generally crystalline bodies of igneous
rock (Dence, 1971; Grieve et al., 1977; Simon,Is et al., 1978a,b;

Grieve et al., 1987; Schuraytz et al., 1994).These impact melt
bodies occu: in two basic forms: (1) as horizontal sill-like

bodies with n the breccias that fill the craters, or (2) as dike-

like bodies :hat penetrate the basement rock beneath the
crater floor.

In small impact structures (D < 5 km), most of the im-

pact melt pr )duced is distributed through the crater-fill brec-

cias as discr.'te fragments typically <10 cm in size, and any

bodies of crI,stalline impact melt are correspondingly small.

Examples ii clude the small pool of melt in the center of the
Brent Crater (Canada) (D = 3.8 km) (Dence, 1968; Grieve,

1978) (Fig. 3.7) and the possible dikes of impact melt just
outside the "im of the Tenoumer Crater (Mauritania) (D =

1.9 km) (Fr "richet al., 1970; Fudali, 1974).

Howeve ; in larger structures, most of the impact melt
forms sill-like and dike-like bodies that can be extensive

(Fig. 6.1). "['he layers of impact melt in several structures

[e.g., West 21earwater (Canada) and Popigai (Russia)] are
several hundred meters thick and contain 80 and 1750 krn 3,

respectively, of igneous rock (Dence, 1968; Grieve and Cintala,

1992). The _vell-known "Vredefort Granophyre" (formerly

called the "Bronzite Granophyre") at Vredefort (South Af-

Fig. 6.9. Impact melt rock; breccia, dike. Exposure of dike of impact melt unit I"Bronzite Granophyre" or "Vredefort Granophyre')
from Vredefort (South Africa) emplaced in preimpact granitic basement rocks. The dike is an inclusion-rich breccia containing numerous
light-colored large and small fragments (dominantly quartzite, with minor granite) iq a dark, massive, coherent matrix of finely crystalline
melt rock. Farm Lesutoskraal 72, near the center of the uplifted basement rocks. Photo from Nel (1927, Plate XIV).
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Fig. 6.10. Impact melt rock; breccia. Clast-rich melt-matrix breccia consisting of numerous mineral clasts (light-colored) (chiefly

plagioclase feldspar from basement rocks), in a matrLx of finely crystalline (plagioclase-pyroxene-quartz) melt. Larger plagioclase clasts

show reaction rims and display partial digestion in the melt. From Mistastin Lake (Canada). Photograph courtesy of R. A. E Grieve

(plane-polarized light).

rica), a unit that is increasingly regarded as an impact melt

(Dence, 1971; Ft:ench and Nielsen, 1990; Therriault et aL, 1996;

Koeberlet al., 1996c), occurs only as small dikes in the deeply

eroded basement of the structure. In this case, the presently,

preserved melt volume is probably only a small surviving

fraction of the total impact melt (103-104 km 3) originally

generated during the formation of the Vredefort structure

(Fig. 6.9). Nearly all the original impact melt, which prob-

ably formed a thick sill-like unit within the original crater,

has been removed by erosion.

The largest presently known body of impact melt may

be the voluminous Sudbury Irruptive in the Sudbury im-

pact structure (Canada). New geochemical and modeling

studies suggest that the entire Irruptive was produced as

a single body of impact melt during formation of the struc-

ture (Faggart et al., 1985; Grieve et al., 1991a; St6Jfler et al.,

1994; Grieve, 1994; Deutsch et aL, 1995). If this view is cor-

rect, the Sudbury structure contains an impact melt body

>8000 km 3 in volume, with the impact melt occurring both

as the sill-like main body of the Irruptive and as a group of

dikes ("offsets") that extend from the main Irruptive into

the surrounding subcrater rocks (Ostermann eta/., 1996; Wood

and Spray, 1998).

6.4. IMPACT MELT IN DISTAL EJECTA

Although virtually all the melt generated in an impact

event is deposited in and around the resulting crater, a very

small fraction (perhaps <0.1 vol%) of impact melt may be

ejected from the crater as millimeter- to centimeter-sized

bodies of pure melt that, chilled rapidly to glass, are depos-

ited as part of a layer of distal ejecta hundreds or thousands

of kilometers away from the impact site. Two kinds of such

glassy material in distal ejecta can be conveniently distin-

guished: (1) spherules of fresh or altered glass, and (2) tek-

tites and microtektites. These unusual glassy bodies,

especially tektites and microtektites, have been the objects

of active, intense, and frequently controversial study, (for re-

views see O'Keefe, 1963, 1976; papers in L. D. Pye et al.,

1984 and Konta, 1988; Koeberl, 1986, 1994a). Several dif-

ferent types of glassy distal ejecta have been recognized, but

future studies will probably produce major changes in both

definitions and formation mechanisms.

At present, it is generally accepted that the formation and

widespread distribution of these objects requires both in-

tense (superheated) melting at the impact site, followed by

high-velocity ejection from it, but the exact processes of

melting and transport are not well understood. One possi-

bility is that jetting of highly shocked, superheated melt oc-

curs at the interface between the projectile and the target

during the initial part of the contact/compression stage

(Kieffb_; 1975; Melosh, 1989, pp. 51-53; Melosh attd Vickery,

1991). Other possible mechanisms may involve dispersal of

subsequently shock-melted material by an expanding vapor

plume from the impact site (Melosh, 1989, pp. 68-69;Alvarez

et aL, 1995). Any formation mechanism must explain chemi-

cal data that suggest that these glassy objects are derived from

the near-surface parts of the section of target rocks at the

impact site (e.g., yon Engelhardt et al., 1987). It is also ac-

cepted that Earth's atmosphere must be briefly removed, or

at least largely dispersed, to permit these fragile molten ob-
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jects to travel long distances without being destroyed, im-

plying that the formation and distribution of such objects

must be restricted to impact events large enough to remove

(at least temporarily) the atmosphere above the impact site.

6.4.1. Spherules

The formation of millimeter-sized glassy spherules from

shock-melted droplets of impact melt appears to be a typical

process in impact events. Such spherules are especially com-

mon in samples of lunar surface materials (e.g., Taylor, 1975,

pp. 67-78; Svmes et al., 1998), where their abundance may

reflect the peculiar conditions of the lunar environment: lack

of atmosphere and the possibility of numerous impacts by

small or microscopic objects. Spherules have also formed in

at least some terrestrial impact events, and spherules of both

glass and melted meteoritic metal have been fimnd in young

and well preserved craters like the Barringer Meteor Crater

(Arizona) (Krinov, 1966, pp. 104-107 and 113-119),Wabar

(Saudia Arabia) (Krinov, 1966, pp. 19-24; MittleJbhldt et al.,

1992), and Lonar (India) (Murali et al., 1987). However,

spherules h tve not been widely observed in preserved im-

pactites associated with most terrestrial impact structures,

possibly be¢ause such ejected molten particles do not sur-

vive the disr aptive effects of the atmosphere, or because such

particles ar{ quickly destroyed by weathering and erosion.

A few occu:rences of spherule-like objects have been de-

scribed in t]Le glassy breccias associated with impact struc-

tures (Fig. _,.11) (Graup, 1981; French, 1987). In contrast,

spherules aJe becoming increasingly recognized as an im-

portant con ponent of the distal ejecta layer from large im-

pact structures, and they may be found at great distances

from the im pact site.

The best known and most-studied spherule deposit is the

distal ejecta layer (K/T boundary layer) from the Chicxulub

structure (h Iexico), which is distributed over distances of

several thor sand kilometers from the impact site and con-

tains a signi _cant component of fresh and altered spherules

of impact m.qt "Montanarietal., 1983; Sharpton etal., 1992;

Fig. 6.11. Impact melt rock; spherulitic glass rim on rock fragment. Heterogenou mLxture ofrecrystallized spherulitic glass and small

rock and mineral fragments, forming a heterogeneous glass), rim on a larger rock I ragment core. The composite inclusion occurs in a

metamorphosed suevite breccia. The small rock fragments, chiefly quartz and felds tar, are generally angular and irregular in shape, and

phenocryst textures t)2oical of glassy volcanic rocks are not observed. Despite postimpa :t greenschist metamorphism, original heterogeneiw

of the glass is preserved by the distribution of secondary minerals, chiefly quartz, fek spar, chlorite, and amphibole. The small red-brown

spherical bodies frequently contain a smaller central crystal fragment, suggesting that hey were discrete droplets befi)re being incorporated

into the rim around the larger core fragment. If so, the texture may result from ac :retion of glass and rock fragments during ballistic

e.jection. (The texture may also represent subsequent in-place devitrification or recrvstallization around the mineral fragment nucleus.)

Granitic rock fragment from Onaping Formation "Black Member," type tocaliv:, at Onaping Falls (Highway 144, DoMing Township),

northwestern corner of Sudburv structure (Canada). Sample CSF-66-50-1-D (plane-polarized light).
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Pollastro and BohoT; 1993; Bohor and Glass, 1995; papers in

Sharp/on and Ward, 1990 and Ryder et al., 1996). The asso-

ciation of these spherules with shocked quartz and an iri-

dium anomaly establishes them as definite impact melt

products, while chemical and isotopic studies have firmly
established their connection to the target rocks of the

Chicxulub structure (Sigurdsson et al., 1991a,b). Massive

spherule layers, as much as a meter thick, have been reported

from the Precambrian, but the), lack any definite shock-

metamorphic effects and are more problematic (Lowe and

Bye@, 1986; French, 1987; Lowe et al., 1989; Simonson, 1992;
Koeberl et al., 1993; Simonson and Davies, 1996; Simonson

et al., ]997). Their impact origin has not been definitely

established, nor have they been linked to any known im-

pact structure.
Spherule layers have important potential for recognizing

and locating other large impact structures in the future.The

deposits can be detected over large areas, they can be identi-

fied as impact products, and they contain isotopic and

geochemical clues that can help locate the source crater and

establish its age.

6.4.2. Tektites and Microtektites

Tektites and micmtektites are unique and long-known

small glassy objects that have a long history of study and

controversy (for reviews, see O'Keefe, 1963,1976; Glass, 1984,

1990; Koeberl, 1986, 1990, 1992, 1994a). They are typically

black in color, although some varieties are greenish, brown-

ish, or grayish. The larger (centimeter-sized) tektites, which
occur on land, are associated with smaller (-<1 ram) micro-

tektites, preserved in deep-sea sediments. Although tektites
and microtektites resemble volcanic glasses in form, the), have

several geologically unusual distinctive characteristics. They

are completely glassy, with no microlites or phenocrysts. They

are typically high in silica (>65 wt%), but their chemical and
isotopic compositions are not volcanic and are closer to those

of shales and similar sedimentary rocks. Also unlike volca-

nic glasses, tektites contain virtually no water (<0.02 wt%),

and their flow-banded structure includes particles and bands

of lechatelierite, melted silica glass. A few tektites contain

partly melted inclusions of shocked and unshocked mineral

grains (quartz, apatite, zircon) as well as coesite (Glass and
Barlow, 1979).

In the best-preserved tektite occurrence, in Southeast

Asia, four types of tektite material have been recog-
nized: (1) splash-form tektites, which are centimeter-sized

objects shaped like spheres, ellipsoids, dumbbells, and other
forms characteristic of isolated molten bodies; (2) ablated

splash-form tektites (buttons), which display a secondary
ring produced during high-speed reentry of a solidified

splash-form tektite into the atmosphere; (3) Muong Nong

tektites, which are generally larger (->10 cm), irregular, and

layered; and (4) microtekites, which are small (<-1 ram)

spherules found as concentrations in specific layers of deep-
sea sediments.

Tektites and microtektites are distributed over large areas

(strewnfields) of Earth's surface. Four strewnfields are known

at present, distinguished by differences in location, age,

and (to some extent) the characteristics of the tektites and

microtektites found. The strewnfields and their ages are:

(1) Australasian or southeast Asian (australites, indochinites,

phillipinites), age 0.8 Ma; (2) IvoT;v Coast (Ajg-ica), age
_1.1 M a; (3) Central European (formerly Czechoslovakian),

age 15.0 Ma; (4) North American, age ~35 Ma. Both the
areas and tektites masses included in the strewnfields can

be large. The Australasian strewnfield covers about 50 ×
106 km 2, or about one-tenth of the area of the Earth, and it

is estimated to contain 10ST of tektite material (Glass, 1990).
The North American strewnfield has an area of about 9 ×

10_ km 2, and contains 108-109 T of tektite material (Koeberl,

1989). Although large, the strewnfield masses correspond

to a volume of <1 km 3 of impact melt, probably <1-2% of
the total amount of melt formed during the event.

Tektites have been controversial objects since their dis-

covery, and both their origin and source have been hotly de-

bated for more than a century (O'Keefe, 1963, 1976, 1994;

Glass, 1990; Taylor and Koeberl, 1994). However, the current
scientific consensus is that tektites and microtektites are

impact melt ejected from terrestrial impact craters. An im-

pact origin is supported by their nonvolcanic chemistr);

the presence in tektites of high-pressure minerals (coesite),

and features indicating unusually high temperatures (lecha-

telierite, decomposed zircon) (Glass andBarlow, 1979; Glass,

1990). The recent detection, in Ivory Coast tektites, of a

chemical signature from an extraterrestrial projectile (Koeberl

and Shirey, 1993) provides strong independent evidence for

an origin in a terrestrial impact event.
A terrestrial source for tektites has been increasingly sup-

ported by their chemical similarity to terrestrial sediments,

by the presence in tektites of relict mineral inclusions (quartz,
zircon, rutile, chromite, and monazite) characteristic of sedi-

mentary rocks, and by accumulating geochemical and isoto-

pic studies that indicate a crustal and sedimentary source.
Three of the four tektite strewnfields have been linked, with

varying degrees of confidence, to established impact craters

of similar age (Glass, 1990; Koeberl, 1990): the Ivo_' Coast
strewnfield to the Bosumtwi (Ghana) structure (D =

10.5 kin) (Koeberletal., 1997b), the Central European field

to the Ries Crater (Germany) (D = 24 km), and the North
American strewnfield to the recently recognized Chesapeake

Bay Crater (USA) (D = 90 km) (Koeberletal., 1996a). (This
latter strewn field was 'also deposited close to -- but about a

quarter of a million years before -- a significant, although
moderate, extinction event at the Eocene/Oligocene bound-

ar):) The absence of any obvious impact structure connected
to the young and widespread Australasian strewnfield is a

continuing problem. Although several characteristics of the

strewnfield itself suggest that the source crater is located

somewhere in a relatively small region of Indochina, no can-

didate impact structure has yet been identified.

Despite thc growing consensus on tektite origins, the
mechanics of their formation and the factors that govern

their distribution are still not well understood. Exactly when

do tektites form during the impact process, and how are they

distributed so widely? What is the relation of tektites to other

types of impact melts, and especially to similar dense glasses
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fimnd in and around certain craters? Why do tektites appear

to form only in a few craters, _dthough nmner, ms young struc-

tures of the required minimum size (probably ->10 km di-
ameter, based on the diameter of the Bosumtwi Crater) are

known? What are the relations of tektite-forming events to

other major terrestrial changes like extinctions and magnetic

reversals? It is clear that the small fraction of" impact melt

that produces tektites during impact events will continue to
generate a large amount of discussion and research.

6.4.3. Miscellaneous Impact Glasses

Other _pes of unusual glass, located in widely different

regions of the Earth, have gradually been recognized as im-

pact melts. These glasses appear as small (generally centi-

meter-sized) irregular bodies that may be scattered over areas

of a few square kilometers to >100 km2. Their textures vary

from dense to vesicular and slaggy, some contain mineral

and rock inclusions, and colors range from blackish to pale

green. These glass), objects have been relatively little studied

(see papers in L. D. Pve et al., 1984 and Konta, 1988), and
many questions remain about their sources, methods of

fi)rmation, and possible relationships to other kinds of
impact melt.

Some of these occurrences are associated with small, young
impact craters. The dense, greenish Aouelloul glass is found

as small (centimeter-sized) irregular bodies immediately out-

side the Aouelloul Crater (Mauritania) (D = 0.39 kin; age

3.1 May, and it appears to have been fi)rmed by complete

fusion of tte local sandstone (Koeberl et al., 1998). The

more vesicu ar and irregular Darwin glass (age 0.75 May is

distributed _,ver a wider area, but may be associated with the

Darwin Cr_ ter (Australia), a small (D = 1 km) possible im-
pact structu "e (Ford, 1972; Meisel et al., 1990). In two other

cases, no c_ ndidate impact crater has yet been identified

for the glas ;es. The Libyan Desert glass (age ~29 May is

a high-silict (>95 wt%), yellow-green to brownish glass

found over _ wide area in western Egypt ( Weeks et al., 1984;

Storzer and Koeberl, 1991). An impact origin is generally

accepted for this glass, on the basis of the high melting tem-

perature req aired for such a silica-rich composition and the
presence of echatelierite and decomposed zircons in a few

samples. H,_wever, a target rock of virtually pure ortho-

quartzite is Jequired, and no source crater has yet been iden-

tified. The 1.ttle-known urengoites and other glasses from

western Sib.'ria (Russia) also appear to be high-silica im-

pact melts (.)eutsch et aZ, 1997), but their geochemical and

isotopic chiracteristics have not been matched with any
known impl ct crater.

6.5 RECOGNITION OF IMPACT
MELT ROCKS

Despite heir exotic origin, impact melt rocks are true

igneous rocl s that have formed by the cooling and crystalli-
zation of hi_h-temperature silicate melts, and they often

Fig. 6.12. Impact melt rock; glassy, with feldspar crystals. Glassy impact melt rock with euhedral quench crystals of feldspar in a partly'
devitrified glassy' matrLx.The brownish glassy matrix shows perlitic devitrification te-tures consisting of circular cracks and the growth of
finer spherulitic crystals ([_ldspar?). This material was long considered an unusual e_trusive igneous rock ("Dellenite"). Identification as
an impact melt has been based on its association with shock-metamorphosed rock: and the presence of anomalously high siderophile
elements (e.g., iridium) in the melt rock itself. Sample from exposures of crater-f lling impact melt layer at Lake Dellen (Sweden).
Specimen courtesy ofA. Deutsch. Sample SDDe-3/4-1 (plane-polarized light).
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Fig. 6.13. Impact melt rock; crystalline, with pyroxene (?) quench crystals. Recrystallized glass), impact melt rock with well-developed

quench textures consisting of highly elongate pyroxene(?) crystals in a fine-grained recrystallized matrix. The highly elongate strings and

networks of narrow crystals are typical for rapidly cooled igneous melts formed by both conventional w)Icanism and impact events.

Sample from the Charlevoix structure (Canada). Specimen courtesy ofJ. Rondot. Sample CHR-68-1 (plane-polarized light).

Fig. 6.14. Impact melt rock; crystalline, with pyroxene (?) quench crystals. Glass), impact melt from a 1-m-wide dike cutting

metamorphosed suevite. Despite postimpact greenschist metamorphism, the rock still preserves well-developed quench textures consisting

of highly elongate subparailel pyroxene(?) crystals (now possibly secondary amphibole?) in a fine-grained recrystallized matrLx. Such

strings and networks of elongate quench crystals are typical for rapidly cooled igneous melts formed by both conventional volcanism and

impact events. In this sample, original igneous textures are preserved, together with a spherulitic texture probably produced during

devitrification or recrystallization of the glassy matrix. Sample from the Onaping Formation "Black Member" at the _,pe locally, Onaping

Fails (Highway 144, Dowling Township), northwestern corner of Sudbury structure (Canada). Sample CSF-68-18 (plane-polarized

light).
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Fig. 6.15. Impact melt rock; crystalline, granular. Typical crystalline impact melt l t)ck from a dike cutting preimpact basement granites

near the center of the Vredefort structure (South Africa). This granular variety of l he so-called "Bronzite Granophyre" shows a typical

igneous texture, with stubby orthopyroxene crystals (gru), apparently rimmed by sec 3ndary amphibole (dark gray), together with elongate

t'eldspar, quartz, and minor fine-grained granophvric quartz-feldspar intergrowths (_ ompare with Figs. 6.16 and 6.17). Sample from dike

cutting basement granite near town of \:rede(ort, South Africa (farm Holfontein _ 4?). Specimen courtesy of R. B. Hargraves. Sample

AVH-6g-2 (plane-polarized light).

Fig. 6.16. Impact melt rock; crystalline, spherulitic. Typical crystalline impact m, It from a dike cutting preimpact basement granites.

This spherulitic variety of"Bronzite Granophyre" shows a typical igneous texture, with large elongate orthopyroxene crystals (gray; high

relief), in a groundmass of fine-grained granophyric feldspar and quartz (compare with Figs. 6.15 and 6.17). Sample from farm Holfontein

44, south of Vrede_)rt, South Africa. Sample AV81-58 (plane-polarized light).
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Fig. 6.17. Impact melt rock; crystalline, with quench textures. Typical crystalline impact melt from a dike cutting preimpact basement

granites. This varie .ty of"Bronzite Granophyre" shows a u'pical igneous texture, with highly elongate quench crystals of orthopyroxene

(gray), in a fine spherulitic groundmass of intergrown feldspar and quartz (compare with Figs. 6.15 and 6.16). Sample from farm

Koppieskraal, Vredefort structure (South Africa). Sample AV81-61A (plane-polarized light).

Fig. 6.18. Impact melt rock; crystalline, inclusion-poor. Well-crystallized impact melt, showing isolated clasts of plaginclase feldspar

(bottom and lower right) in a fine-grained melt matrix consisting of well-crystallized plagioclase, poikilitic pyroxene, quartz, and opaque

minerals. The clasts (xenocrysts) are generally partly digested, but new feldspar rims (clear) have developed on the altered cores (cloudy,

gray). Sample from thick annular layer of impact melt preserved at Mistastin Lake (Canada). Photo courtesy of R. A. E Grieve (plane-

polarized light).
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0.5 mm

Fig. 6.19. Impact melt rock; fine-crystalline, with pyroxene coronas. Completely :rystalline impact melt rock, with clasts ofplagioclase

and quartz in a very fine-grained matrix consisting ofplagioclase, poikilitic pyroxen '.,quartz, and opaque minerals. Distinctive coronas or

"necklaces" of small pyroxene crystals have developed around quartz grains by read ion beBveen the quartz xenocrysts and the melt. The

triangular quartz grain shown is surrounded by a thin rim of small pyroxene crystals igra); high relief), beyond which is a rim of clear glass

that has been depleted in ir{m and other coloring, agents to form the pymxene. Sam] ,le from thick annular layer of impact melt within the

Mistastin l_ake structure (Canada). Photo courtesy of R. A. E Grieve (plane-polal ized light).

exhibit textures and mineral compositions that are identical

to those of typical endogenic volcanic and intrusive rocks.

Impact melt rocks may range in character from largely glassy

rocks containing quench crystallites (Figs. 6.12, 6.13, and

6.14) to completely cwstalline and even coarse-grained ig-

neous rocks that may show a wide range of D'pical igneous

textures in even small bodies (Figs. 6.15, 6.16, 6.17, and

6.18). Because of these similarities in mineralogy and tex-

ture, it may often be impossible to distinguish between an

isolated specimen of impact melt and a normal igneous rock

on the basis of petrographic observations alone.

The similarities between impact melt rocks and endo-

genie igneous rocks have been one factor in the prolonged

controversies over the origin of many now-accepted impact

structures. Nevertheless, several decades of field and labora-

tory studies have now produced some generally reliable

criteria for recognizing impact melt rocks and for differenti-

ating them from endogenic igneous rocks.

The best field evidence for the origin of an impact melt

unit is an intimate association with more distinctive shock-

metamorphosed rocks. Impact melt bodies that occur as dikes

cutting the subcrater basement rocks may be closely associ-

ated with pseudotachylite breccias or (more convincingly)

with shatter cones and microscopic shock-deformation ef-

fects in the subcrater rocks that provide definite evidence of

an impact origin. Above the crater floor, impact melt bodies

of various sizes are intermingled with breccias that contain

distinctively shock-metamorphosed rock and mineral frag-

ments; such an association is also clear evidence for impact.

On the _cale of individual hand specimens, the most de-

finitive cha: acteristic of impact melts is not the igneous crys-

tallization t. :xtures, but the nature and appearance of included

rock and re ineral clasts. These fragments are derived from

the target :ocks; the), do not resemble cogenetic volcanic

materials. I 'urthermore, because the clasts are exotic (xeno-

liths and xe; _ocrysts), they may be out of equilibrium with the

melt and re ay develop reaction textures against it. Distinc-

tive overgr{ wths of compositionally different feldspar have

formed on Zeldspar xenocrysts in the impact melt from the

Brent Crat{ r (Canada) (Grieve, 1978). Another common re-

action textt re in impact melts is the formation of"necldaces"

of small pyoxene crystals against quartz clasts (Fig. 6.19).

Although (ommon in impact melts, such reaction textures

also form ar _und xenocrysts in some endogenic igneous rocks

and do not _pecifically indicate an impact origin.

More co nvincing, preserved target rock fragments in im-

pact melt r{ cks often contain definite shock features such as

PDFs in qu irtz. Other textures, which reflect extremely high

formation emperatures, also provide convincing evidence

of impact. 2eldspar xenocrysts may show unusual melting

and recryst; llization textures produced at high temperatures

( Ostertag a, d StOfjqer, 1982; Bischoff and StSflqer, 1984). Some

rapidly coo[ed impact melt rocks may also preserve milli-

meter-sized patches of lechatelierite, produced from the

high-temp, rature melting of quartz grains (Figs. 6.20 and

6.21) (Fre_,ch et al., 1970; Carstens, 1975; St_fJTer and

Langenhors, 1994). When such bodies oflechatelierite cool,

a combinat on of thermal stress and crystallization produces
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Fig. 6.20. Impact melt rock; partly crystalline, with lechatelierite. Finely crystalline impact melt rock, containing inclusions of quartz

glass (lechatelierite). Irregular inclusions of clear lechatelierite (e.g., center, light gray) occur in a partly crystalline matrix consisting of

pyroxene, elongate feldspar laths (white), opaque minerals, and interstitial brown glass. The contact between lechatelierite and brownish

matrix glass is irregular and interpenetrating, indicating that both glasses were originally molten at the same time. The lechatelierite

displays a typical crackled (Ballen) texture produced by devitrification of the silica glass to silica minerals. The lechatelierite probably

originated by shock-melting of original quartz grains, at temperatures above 1700°C, and was incorporated into the more abundant

impact melt formed by the larger volume of target rock. The presence of small unaltered quartz grains (small scattered white areas) in the

impact melt indicates that the lechatelierite did not form by simple in-place thermal melting in a very-high-temperature melt. Sample

from a possible dike of impact melt located on the rim of Tenoumer Crater (Mauritania). Specimen courtesy ofR. S. Dietz. Sample TM-

3-1 (plane-polarized light).

a distinctive"crackled" pattern of curved fractures in the origi-

nal glass (Figs. 6.20 and 6.21). This Ballen texture is a dis-

tinctive feature oflechatelierite in impact melt rocks.

Impact melt samples that lack distinctive shock-meta-

morphic textures can still be identified by a variety of

geochemical signatures. One test is to compare the impact

melt composition with that of the target rocks. Because im-

pact melts are produced predominantly from target rocks,

with only a minor (usually -<1%) projectile contribution, their

chemical and isotopic compositions should correspond to

the average compositions of the local bedrocks. The demon-

stration of such compositional matches, especially when the

composition cannot be easily produced by endogenic pro-

cesses, is a strong (although not absolute) indication of an

impact origin. Such comparisons can be more conclusive if

there is a chemically or isotopically unusual component in

the target rocks that can be recognized in the composition

of the impact melt (French and Nielsen, 1990).

More definite evidence of an impact origin can be ob-

tained by analyzing the impact melt for siderophile elements

such as iridium, osmium, platinum, and gold. Such elements

have extremely low abundances in terrestrial crustal rocks,

but their abundances are much higher (100-1000x) in some

meteorites. An anomalously high content of siderophile el-

ements (especially iridium) in an impact melt indicates that

the melt contains material (perhaps as much as a few per-

cent) derived from the melted and vaporized impactor (e.g.,

Palme et al., 1979, 1981; Palme, 1982; Schuraytz et aI., 1996).

Such an iridium anomaly, identified in the K/T boundary

ejecta layer, provided the first evidence that a large meteorite

impact was associated with the K/T extinction (Alvarez et

al., 1980). More recently, measurements of osmium isotopic

ratios have made it possible to identify even very small

amounts (-<0.1 wt%) of the projectile in impact melt units

(Koeberl and Shirey, 1993; Koeberl et al., 1996c, 1998).

The isotopic systematics of such age-dating systems as

Rb-Sr and Sm-Nd can demonstrate that impact melt rocks

have been derived from near-surface crustal rocks and not

(like most normal igneous rocks) from the deep crust or

mantle. Abnormally high 87Sr/S6Sr ratios are a good indica-

tor of impact melts in relatively young impact structures de-

veloped in older crustal rocks; high ratios indicate that the
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melt was produced by the melting of older and more radio-

genic crustal rocks (e.g., French et al., 1970). The study of

samarium and neodymium isotopic compositions of the large

Sudbury (Canada) Irruptive (Faggart et al., 1985) provided

the first str )ng indication that the entire Irruptive was an

impact-mel t body derived entirely by melting and mixing of

the crustal iacks in which the Sudbury structure is emplaced

(see also D, utsch et aZ, 1995; Ostermann et al., 1996).

Fig. 6.21. Impact melt rock; partly crystalline, with lechatelierite. Finely crystalli ae impact melt, containing inclusions of quartz glass

(l,'chatelierite). Irregular inclusions of clear lechatelierite (light gray) occur in a paJ tly crystalline matrix containing elongate pyroxene

quench crystals and clear interstitial brown glass. Contact between lechatelierite an, [brown matrix glass (central region) is irregular and

interpenetrating, indicating that both glasses were originally molten at the same time. The Iechatelierite displays a typical crackled

(Ballen) texture produced by devitrification of the silica glass to silica minerals. The lechatelierite probably originated by shock-melting

of original quartz grains, at temperatures above 1700°C, and was incorporated into t le more abundant impact melt derived from melting

a larger vohtme of target rock. The presence of small unaltered quartz grains (small s( attered white areas) in the impact melt indicates that

the lechatelierite did not torm by simple in-place thermal melting in a very-high-te mperature melt. Sample from a possible dike of im-

pact melt locatcd on the rim of Tenoumer Crater (Mauritania). Specimen courtesy of R. S. I)ietz. SampleTM-1-1 (plane-polarized light).



How to Find Impact Structures

7.1. REASONS FOR THE SEARCH 7.2. DETECTION OF CANDIDATE

IMPACT SITES

Since the 1960s, the field of meteorite impact geology

has evolved far beyond the earl), arguments about the im-

pact origin of a few individual geological structures. Mete-

orite impacts on Earth are now widely accepted as an

important geological process, and one whose effects are still
not full), understood. At the same time, the identification

of new impact structures through the discoveDr of shock-

metamorphic effects has become a fairly simple and rou-

tine process.
The current search for new impact structures now em-

phasizes the recognition, among the new discoveries, of in-
dividual structures that can provide specific information about

key, problems: shock-wave transmission, cratering mechan-

ics, physical conditions of the impact environment, impact-
melt formation, environmental and biological effects, and

the nature of the impact flux over geologic time. The last

problem is especially uncertain and controversial, chiefly'

because relatively few impact structures have been accurately

age-dated (Bottomley et al., 1990; Deutsch and Schdrer, 1994).

The discovery and accurate dating of another 10-20 struc-

tures might make it possible to estimate more accurately the
bombardment rate over time and to determine whether the

bombardment process has been random or periodic.
For these reasons, the discovery and recognition of new

terrestrial impact structures is still a critical component of
future research in this field. To aid in this search, the re-

mainder of this chapter summarizes the general properties

of impact structures as they now appear on Earth, so that
new candidates can be identified for detailed sampling and

study (see also Appendix).

The process of recognizing a new impact structure in-

volves two steps: (1) detection of a candidate impact site

through field studies, geophysical measurements, remote

sensing, drilling programs, or (sometimes) pure accident;

and (2) verification of the site as an impact structure by, the

discovery of shock-metamorphic effects in its rocks. (In
some cases, verification can also be provided by the dis-

covery of meteorites or a meteoritic signature -- such as
excess iridium -- in the breccias or melt rocks associated

with the structure.)

Many now-established impact structures first attracted

attention because they appeared as anomalous circular fea-

tures in topography or bedrock geology: lakes, rings ofhills,
or isolated circular areas of intense rock deformation in oth-

erwise undeformed bedrock. A few impact structures devel-

oped in sedimentary, rocks were noted because the upturned
rocks of their central uplifts resembled salt domes, and the

perceived economic potential promoted drilling and detailed

geophysical studies. Other impact structures have been found

by accident in the course of general field mapping or re-

gional geophysical surveys. Some well-known structures [e.g.,

Ries Crater (Germany), Sudbury (Canada), and Vredefort
(South Africa)] have been considered (often for many de-

cades) as the sites of unusual volcanic activity or "crypto-

volcanic" events. And a few structures, so deeply eroded that

no circular form remains, have been recognized only by the

presence of scattered patches of unusual breccias or strange
"volcanic" rocks.

The increasing appreciation of extraterrestrial impacts as

a mainstream geological process, and the increasing atten-
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tion given to newly recognized impact structures, has pro-

moted more searches for new structures as well as system-

atic mapping of recognized structures by the sophisticated

methods of remote sensing and geophysical surveys. How-

ever, the discovery and verification stages still remain sepa-

rate. A candidate impact structure may be detected in many

ways (field geology, remote sensing, geophysics), but verifi-

cation comes only from the identification of definite im-

pact-produced features -- shock-metamorphic effects,
unique geochemical signatures, or both -- in its rocks. At

present, there are no other geological or geophysical criteria

that unambiguously distinguish impact structures from other

circular features such as w)lcanic calderas, plutonic intru-

sions, or salt domes. Definite proof of impact origin requires
access to the rocks. The candidate structure must first be

detected somehow, then it must be sampled.

7.2.1. Geological Features

The first indication of a possible meteorite impact struc-

ture is frequently a distinct circular (or nearly circular) fea-

ture in the topography or bedrock geology. This circular

region commonly shows distinctive and often anomalous

bedrock geology in comparison to the surroundings. The
region may also be the site of intense and localized deforma-

tion (fracturing, Faulting, and brecciation), or it may contain

unusual (or even normal-looking) volcanic or intrusive ig-
neous rocks.

The distinctive features of impact structures vary with

age and erosional history (Dena', 1972; Grieve, 1991; Grieve

and Pilkington, 1996). In the few impact structures young

enough and fresh enough to still preserve their original cra-

ter rims, the circular fbrm may be striking. Original ejecta

and shocked rock fragments may still be preserved on the

original ground surface outside the crater, and meteorite

fragments may even be fimnd to establish the origin of the
structure beyond question. In more deeply eroded structures,

where the original rim and outside ejecta have been removed,

the circular outcrop pattern ofbreccias and melt rocks that

filled the original crater may still attract attention. At deeper
erosion levels, where these rocks have been removed, a cir-

cular pattern of intense deformation and brecciation, accom-

panied in larger structures by a preserved central uplift, may

still be recognizable, especially in structures fi)rmed in sedi-

mentary rocks. In very deeply eroded structures, the circular

character may still be expressed by deformed or unusual rock

ty_pes (e.g., pseudotachylite) in the bedrock, even when the
structure has been strongly deformed by postimpact tectonic

activity [e.g., Sudbury (Canada)].

A few impact structures have been so deeply eroded that
no distinctive circular feature remains. Such structures exist

only as patchy remnants of unusual "volcanic" breccias and

other deformed rocks, and in ma W cases [e.g., Rochechouart

(France), Gardnos (Norway)] the shock effects (e.g., shatter

cones, PDFs in quartz) were only identified in the rocks de-
cades after the rocks themselves had been first described.

The accumulated geological literature, especially papers that

describe strange breccias and unusual "volcanic" rocks, may'

be a reward ng ground in which to search for unrecognized

impact stru,:tures of this kind.

7.2.2. Geophysical Features

The fort lation of impact structures involves shattering

and breccia ion of the rocks that already exist beneath the

crater floor, followed by filling of the resulting crater by a

varie D, of in pact-produced breccias and frequently by post-

impact sed ments. These processes produce distinctive

changes in t ae physical properties of the rocks in and around

impact stru, tures. These changes are expressed most nota-

bly as variati )ns in the gravity and magnetic fields (Pilkington

and Grieve, 1992; Grieve and Pilkington, 1996).

Gravity_nomalies. Impact structures, even large ones, are

relatively sh: [low, near-surface features in comparison to typi-
cal wflcanic md tectonic structures. Even so, fracturing and

brecciation, _f the target rocks beneath an impact structure

extend to si_;nificant depths below the crater floor, and sig-

nificant fracturing and brecciation may even be present at

depths of sin eral kilometers below large structures. Evidence

from some s:udies, e.g., at lades Crater (Germany), suggests

that Fracturing extends to depths of about one-third the

diameter of :he structure (e.g., 6-8 km at lades Crater). The

fractured ro :k is less dense than the unaltered target rock

around the s :ructure, and the resulting density contrast may

be increased by the similarly underdense fragmental brec-

cias and sedi ments that fill the crater. As a result, many im-

pact structur .% especially bowl-shaped simple craters, exhibit

a negativegr zvity anomaly that is generally circular in shape

and closely _oincides with the structural boundaries of the
circular featt re.

Such a n_ gative gravity anomaly is not a definite sign of

impact, and such anomalies are absent from many estab-

lished impac structures. In complex impact structures, where

subcrater fra :turing and brecciation are accompanied by up-

lift ofdensm deep-seated rocks into the central part of the

structure, th ; normal negative gravity anomaly may be re-

duced or eve n converted to a positive anomaly, because the

uplifted den'. er rocks overcome the effects of fracturing and

brecciation (, _te/)to, 1990; Pilkington and Grieve, 1992; Grieve

and Pilkingt_ n, 1996).

Magnetic, _nomalies. Magnetic field measurements around
impact struc :ures have not revealed any single specific sig-

nature that _'an be clearly related to the impact process

(Pilkington a 7dGrieve, 1992). Some impact structures show

no significan: magnetic signature because of the fragmenta-

tion and mix ng of target rock during the cratering process,

and they ma) appear only as an anomalous circular region of

low or rando_ n magnetic signature among any regional mag-

netic pattern., (e.g., linear anomalies) present in the surround-

ing preimpa_ t bedrock (Scott et al., 1997). At other impact

structures, a s trong local magnetic anomaly (positive or nega-

tive) may be produced by the remanent magnetization of
units of impact melt within the structure or by the uplift of

more magnetic units from depth into the central uplift (Hart
eta/., 1995).
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Seismic studies. Seismic profiling studies are increasingly

being used to determine the structural deformation present

beneath large impact structures [e.g., Gosses Bluff(Austra-
lia) (Milton etal., 1972, 1996b); Montagnais (Canada) (Jansa

and Pc-Piper, 1987); Chesapeake Bay (USA) (Poag, 1996,
1997); and Chicxulub (Mexico) (Morgan eta& 1997)]. These

studies have revealed a pattern of subsurface deformation

features that appears distinctive for such impacts, especially

in the larger basin-form structures: (1) modest downward
and inward displacements of the rocks along the edges of

the basin; (2) structural disruption, with no coherent seis-

mic reflectors, in a central zone that corresponds approxi-

mately to the region immediately beneath the central uplift

and the original transient cavity; and (3) beneath this central

zone, evidence of preserved and continuous reflectors at

depth, demonstrating that the structure is shallow and has

no connecting roots to the lower crust or mantle. Seismic

profiles have also played an important role in demonstrating

the large size and complexity of the highly deformed Sudbury
(Canada) structure (Wu et al., 1994).

Despite the complexities of geophysical features and the

lack of unique signatures for impact structures, geophysical
measurements have been essential for the detection of

impact structures that have been completely buried under

layers of younger sediments. The appearance of circular

anomalies in gravity, or magnetic surveys has already led to

the discovery of many verified subsurface impact structures,
about one-third of the current known total (Grieve, 1991;

Grieve and Masaitis, 1994; Grieve et al., 1995). Surprisingly

large and important impact structures have been discovered
in this way: Puchezh-Katunki (Russia) (D = 80 km),

Chicxulub (Mexico) (D ->180 km), the Chesapeake Bay

Crater (USA) (D = 90 km), and Morokweng (South Africa)

(D ->70 km?).

Geophysical studies will continue to play a critical role in

the future discovery and study of impact structures. Even

though a well-defined circular geophysical anomaly can only

indicate a possible impact structure, the discovery of such
anomalies has frequently been followed by verification

through core drilling, sample recovery, and the identifica-
tion of distinctive shock effects or chemical signatures in the

rocks (e.g., Corner et al., 1997; Hart et al., 1997; Koeberl et

al., 1997a).The combination of geophysical field studies and

subsequent core drilling is proving to be an important and

effective approach for detecting and verifying new impact
structures, and it is essential for detecting and exploring bur-

ied ones. Geophysical techniques also play an important and

increasing role in exploring established impact structures to
determine the details of their geology and formation.

7.3. VERIFICATION OF IMPACT

STRUCTURES

The brief history of impact geology suggests that most of

the new impact structures identified in the future will be
noted first as some kind of anomalous circular or near-cir-

cular feature: (1) a circular or near-circular topographic or

physiographic surface pattern that can be detected by some
form of remote sensing such as air photography or (increas-

ingly more common) space-based imagery; (2) a circular re-

gion of anomalous exposed bedrock, characterized by intense

and localized deformation, uplift, breccia development, or

by the occurrence of unusual "volcanic" rocks; or (3) a circu-

lar geophysical anomaly; most probably in the graviD_ or mag-
netic fields, associated with a surface or subsurfiace structural

feature. Rarer candidate sites that may be deeply eroded

impact structures may lack a circular signature and may ap-

pear only as scattered exposures of anomalous rocks on the

ground or as descriptions in the geological literature.
Verification of an impact origin requires the discovery of

unique impact-produced features. At present, the only gen-

erally accepted impact features are shatter cones, petrographic
shock effects, or distinctive geochemical signatures in the

rocks of the structure. Possible impact structures must there-

fore be sampled by means of field studies, core drilling, or

examination of existing sample collections. In the field, well-

developed and indisputable shatter cones are the best indi-

cators of impact, because they are distinctive and widely

distributed, especially in the basement rocks of deeply eroded

structures. Pseudotachylite hreccias in basement rocks may

indicate an impact origin, especially where they occur over

large areas or in thick veins (e.g., >-10 m), but they are not

yet accepted as a unique impact indicator because similar

rocks can be produced by tectonic processes.

Rock samples can provide definite evidence of impact,

often by applying only the straightforward and inexpensive
methods of standard petrography. Many distinctive shock

effects can be identified even in small samples, such as pieces

of drill core. The presence of PDFs in quartz is the most

widespread, distinctive, and generally accepted petrographic
shock criterion. They may occur in samples from two dis-

crete regions in the structure: (1) in shocked-metamor-

phosed rock fragments in crater-fill breccias and impact
melts; and (2) (more rarely) in preserved regions of shocked

parautochthonous rocks just below the original crater floor,

or in the central uplift, where PDFs may occur in or with
shatter cones. Less common, but equally definitive, indica-

tors of impact include diaplectic glasses (e.g., feldspar trans-
formed to maskelynite), high-pressure mineral phases (e.g.,

coesite, stishovite), and lechatelierite (fused quartz) in im-

pact melts.
In breccias or melt rocks that display no shock features,

geochemical analyses may provide definite evidence of im-

pact by identifying a signature from the projectile, either

excess iridium (or other platinum-group elements) or dis-

tinctive osmium isotope ratios. Other geochemical signa-

tures that strongly support an impact origin, but do not

provide definite proof, include: (1) a match in chemical

and/or isotopic compositions between the breccias and melt
rocks and the target rocks in which the structure is found;

and (2) isotopic signatures (e.g., Sm/Nd, Rb/Sr) in the meh
rocks that indicate derivation entirely from crustal rocks

(especially from crustal rocks much older than the structure

itself), without any mantle-derived component.
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What Next?

Current Problems and Future Investigations

8.1. IDENTIFICATION OF NEW

IMPACT STRUCTURES

Despite the apparent abundance of impact structures
(MY0 now known), the terrestrial record remains both in-

complete and biased, and it is essential to continue the search.

The present number of known impact structures is still

-<25% of the total presumably, still preserved on the land

areas of the Earth (Trefil and Raup, 1990; Grieve, 1991).

Even worse, the processes of geological destruction active

on the Earth have strongly biased the observed distribution.

Most known impact structures have ages of <200 Ma, and

small, easily eroded structures are strongly underrepresented
in the record (Grieve, 1991; Grieve andPesonen, 1992,1996).

The identification of more impact structures, accompa-

nied by accurate age-dating, is essential to improve this data-

base. With better data, we can explore some important and

unanswered questions: What is the actual impact rate of
various-sized extraterrestrial objects on Earth? Is the bom-

bardment rate variable, nonrandom, or even periodic? What

are the relative importances of asteroids and comets as im-

pacting bodies? With a larger suite of impact structures, it

will also be possible to identify, well-preserved examples that

can provide detailed information about cratering mechanics

and geological effects. Finding new impact craters is also a

challenge to our abilities and our imaginations: How much

of the preserved impact record on Earth can we discover

with the techniques we now possess, and where are the pieces
of this record located?

Current searches for new impact structures are now es-

pecially active in Fennoscandia (Pesonen and Henke/, 1992;
Pesonen, 1996), Africa (Koeberl, 1994b), and Australia

(Glikson, 1996b; Shoemaker and Shoemaker, 1996). An im-

portant component of these searches has been the discovery

ofsubsurfiace impact structures from geophysical data (Cor-

ner et al, 1997; Hart et al., 1997; Gostin and Therriault, 1997).

Until recently; the sea floor has been largely ignored in the

search for impact structures, and only a few submarine im-

pact structures have been identified (e.g.,Jansa andPe-Pipe_;

1987; Poag, 1996; Dypvik el al., 1996). The special prob-

lems of submarine impact structures are finally receiving at-

tention. There is new interest in searching for impact

structures beneath the present oceans, and scientists are be-

ginning to explore the unusual geology of submarine impact

events in a few impact structures that formed underwater
but are now accessible on land (Therriault and LindstrOm,

1995; Lind_trom et al., 1996). Even so, all the submarine
structures so Far identified have formed on the shelf areas of

adjacent continents. The deep ocean basins, which probably

received about three-quarters of the projectiles that struck

Earth in the last ~200 re.y:, still remain to be explored, al-

though evidence for one recent small impact in the South
Pacific has been discovered (Gersonde et al., 1997). Amid

this current activity on sea and land, the search for the source

crater that produced the Australasian tektite strewnfield re-

mains a prominent and nagging problem for the future.

8.2. IMPACT EVENTS AND EXTINCTIONS

A firm connection between one large impact event and

one major biological extinction has now been solidly, estab-
lished between the Chicxulub structure (Mexico) and the

K/T event (Alvarez et al., 1980; Sharpton et al., 1992; papers

in Ryderetal., 1996;Alvarez, 1997). Research on the K/T

problem has now largely turned away from debating the ex-

istence of the impact and is now focused on closer studies of

the consequences. Paleontologists are studying the finer de-
tails ofthe extinction itself the duration of the overall event,

the relative timing of the disappearances of different spe-
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ties, and the various environmental stresses and"kill mecha-

nisms" implied by the geological record.
At the same time, a major geological effort, involving

geophysical surveys and new drilling projects (e.g., Sharpton

et al., 1993, 1996b; Morgan et al., 1997), is concentrating on

the Chicxulub structure itself, to determine more accurately

the size of the structure, the energy released by the impact,

and the amounts of volatile materials (water vapor, CO 2 and

SO2) released from melted and vaporized target materials

(ocean water, limestones, and evaporites) (papers in Ryder et

al., 1996; Pope et aL, 1994, 1997; Yang anddhrens, 1998).

These data are needed to accurately' estinaate the global en-

vironmental stress and to complement the paleontological
studies of the extinction. In addition to its tie to the K/T

extinction, the Chicxulub structure itself, because of its rela-

tive youth and immediate burial after formation, is the best-

preserved terrestrial impact structure of its size discovered

to date, and the geological studies will also yield a wealth of

infbrmation about the cratering mechanics and geological

effects involved in such large, rare impact events.

Despite the strength of the connection between Chicxulub

and the K/T extinction, it has not yet proved possible to

establish a similar firm link between an impact event and

any of the half-dozen or so other major extinctions recorded
in the last 700 m.y. However, there are growing indications

of a link between impact events and the lesser extinction

observed about 35 m.y. ago near the Eocene-Oligocene

boundary (Montanari et al., 1993; Clymer et aL, 1996;

Langenhorst and Clymer, 1996; Glass et al., 1998). All the

essential ingredients seem to be present: a significant ex-

tinction, a layer of impact debris (including microtektites)

at the boundary, and two candidate impact structures in

the ->90-km-diameter range: Popigai (Russia) (Bottomley et

al., 1997) and Chesapeake Bay (USA) (Koeberletal., 1996a).

A layer containing shocked quartz has also been found at
the older (205 Ma) Triassic-Jurassic boundary, a location

also characterized by a major biological extinction (Bice et
al., 1992).

8.3. DISTAL IMPACT EJECTA

An important and unexpected resource for future studies

of terrestrial impacts are the thin layers of distal ejecta that

are distributed over continental to global distances from the

impact site. In the past, it was considered unlikely that such

thin deposits could be preserved in the geologic record, and

little consideration was given to finding and identifying them.

This attitude has changed drastically, chiefly as a result of

studies at the KIT boundary, where the distinctive global

ejecta layer from the Chicxulub impact structure was con-

clusively identified even before the structure itself was lo-
cated. Distal ejecta layers have 'also been identified from other

structures, e.g., Manson (Iowa) and Acraman (Australia),

and it is now generally accepted that microtektite layers also

represent distal ejecta.

Although only a few distal ejecta layers from particular

structures have been identified so far, the potential impor-

tance of such layers has been increased by new methods of

study and I nalysis. Layers of impact-crater ejecta can now

be clearly distinguished from similar sedimentary or volca-

nic units (e g., ash-fall beds) by the presence of such unique
features as pherules, quartz PDFs, and iridium anomalies.

Current ge)chemical techniques are sensitive and precise

enough -- even if delicate and time-consuming -- to ex-

tract impmtant information about the impact event from

small partk les, and it is possible, in many cases, to deter-

mine from tsmall sample ofejecta the age of the impact or

the geochm aical characteristics of the target rock involved.

Distal ej :eta 1wers in the sedimentary record have a large

and unexplc red potential to provide critical insights into the

impact histc,ry of the Earth (Grieve, 1997). Systematic iden-

tification of distal ejecta layers in long-duration sedimentary

sections car yield independent estimates of the impact rate

over geolog c time. Ejecta layers linked to known large im-
pact structu :es can improve our understanding of the crater

formation F rocess and the areal extent of the environmental

effects. In scme cases, it may be possible to obtain good age-

dates on irr pact events from the stratigraphic ages of the

ejecta. Som." individual ejecta layers may also indicate the

existence of msuspected and undiscovered impact structures,
as was the c _se with the Chicxulub structure and for a Late

Devonian i_npact event recently recognized in the western
USA (Lero_ x et aL, 1995).

8.4. CARBON CHEMISTRY IN THE

IMPACT ENVIRONMENT

The unic ueness of the high-pressure shock-wave envi-

ronment bel aw the developing impact crater has long been

appreciated, but there are recent indications that equally

unique cone itions above the impact point also produce un-

usual and la=ting effects. At the moment of impact, a high-

temperature vapor plume, with temperatures of thousands

of degrees, expands outward and upward from the impact

point (Melo: b, 1989, pp. 68-71). This plume, as it interacts

with the atn osphere, plays a major role in ejecting material
from the era :er to great distances (e.g.,Alvarez etal., 1995).

This extreme environment also produces a variety of un-

usual and sti il-baffling chemical changes.

Carbon c)mpounds in impactites have recently revealed

a variety of :xciting and puzzling features, some of which

may reflect tl Leinstantaneous high-temperature environment

within the v tpor plume. Diamonds have long been known

to be a shoct -metamorphic product in carbon-bearing tar-

get rocks (e.l ;., Masaitis, 1998; Masaitis et al., 1972; Koeberl

et al., 1997ci, but more recent studies have discovered tiny

nanodiamor ds, unrelated to preimpact target graphite, that

apparently fc rmed in the vapor phase and then were depos-

ited in suevite breccias (Hough et al., 1995) and in ejecta

at the K/T boundary (Carlisle and Braman, 1991; Hough
et al., 1997).

A differevt form of carbon, fullerenes, has also been dis-

covered in terrestrial impact environments. These recently
discovered % _ccer-ball" carbon molecules (e.g., the C_,0mol-
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ecules called "buckyballs") have attracted attention because

of their stability and unusual chemical characteristics (e.g.,

the ability to "cage" other atoms) (for background and de-

tails, see Aldersey-Williams, 1995). Because of their stability,

it has been suggested that fullerenes could form in the out-

flows from high-carbon stars and could be common in both
the interstellar medium and in meteorites, although fi.dlerenes

have not yet been conclusively identified in either location.
However, fullerenes have been identified in the K/T ejecta

layer (Heymann et al., 1994) and in the carbonaceous

Onaping Formation, an impact breccia at the Sudbury struc-
ture (Canada) (Becker et al., 1994, 1996). The presence of

fullerenes in such impact-produced deposits, their possible

extraterrestrial origin, and the implications of their presence

for the origins of life on Earth have focused considerable

multidisciplinary attention, particularly from exobiologists,

on impact processes in general and Sudbury in particular.
Carbon in impact structures, and its behavior during im-

pact events, is an area of research that currently contains a
few exciting observations, enclosed in a large number of un-

answered questions. Carbon is generally absent in impact

structures; impactites with significant carbon contents

(>0.5 wt%) are known only from Sudbury (Canada) (French,
1968b; Avermann, 1994) and Gardnos (Norway) (French et

al., 1997). The source(s) of this carbon has not been estab-

lished; possible sources are the projectile (e.g., carbonaceous
chondrite meteorites or comets), Earth's atmosphere, or yet-

unrecognized carbonaceous target rocks. It is also possible
that the carbon has been introduced into the impactites dur-

ing later metamorphism. Identifying the sources of carbon

in these impactites, and distinguishing between impact-re-

lated and postimpact carbon, requires careful sampling and

sophisticated analyses in the future.

The problem of carbon in the impact environment leads

directly to large and longstanding questions about the origin
of the solar system, the formation of planets, and the origin

and history of life on Earth. Are any carbon and organic

molecules present in the incoming projectile destroyed by

the impact event, or can they survive to contribute to the

subsequent origin of life? What does the formation and sur-
vival of diamonds and fullerenes in impact events tell us about

the physical conditions in the vapor plume or the nature of

Earth's atmosphere at the time of impact? Impact structures,

especially those with carbonaceous impactites, preserve the
results of unique natural experiments in prebiotic chemistry

and the behavior of carbon compounds under extreme con-

ditions. Interdisciplinary studies to explore these problems

should be an important part of future impact studies.

8.5. POSTIMPACT PROCESSES
AND EFFECTS

Past research on impact events has concentrated on the

formation of the impact structure and its immediate ef-

fects: shock-metamorphic features, generation of impact

melts, and biological extinctions. It is now recognized that

the large amounts of mechanical and thermal energy depos-

ited in the impact site produce longer-term effects, and there
is new interest in identifying and studying impact effects

that persist during the period (102-106 yr) in which normal

geological processes resume in the region affected by the

impact event.
The thermal energy deposited in an impact structure as

shock heating and impact-melt formation can produce hy-

drothermal activity and related ore deposits similar to those

that result from more conventional geological processes. Such

postimpact activity is frequently expressed in the secondary

alteration of the impact melts themselves (Dence, 1971;
Newsom et al., 1986; McCarville and Crossey, 1996). How-

ever, in larger structures, the combination of large volumes

of melt and extensive hydrothermal circulation may produce

new sedimentary deposits and associated ore bodies, e.g.,
the Vermillion Formation at Sudbury (Canada) (Grieve and

Masaitis, 1994).

The postimpact sediments that fill some impact struc-

tures may preserve a record of the important transition be-

tween impact-related effects and postimpact geological

history. At the buried Chicxulub structure (Mexico), the thick
crater-fill deposits have a special importance because they

may preserve the immediate postimpact history of waning
impact effects and biological recovery after the K/T event.

At other impact sites, crater-fill sediments may preserve the

only available long-term record ofpostimpact geological and

environmental processes that originally affected a much wider

region (Beales andLozej, 1975; Partridge et al., 1993; Grieve,

1997).

The overall shape and general geological characteristics

of impact structures have been well established by extensive
research, and these features can serve as important markers

for determining postimpact erosion and deformation (Gr#ve,
1991). This knowledge is also important for identifying and

reconstructing highly deformed impact structures, such as

Sudbury (Canada) (Wu et al., 1994), in which the presently
preserved feature may represent only a fraction of the size of

the original impact structure (Therriault e/aL, 1997).

8.6. PETROGENESIS OF IGNEOUS ROCKS:

IMPACT MELTS

The impact melt rocks preserved in terrestrial impact
structures represent unique, important, and virtually unstud-

ied laboratory experiments in the formation, emplacement,

and crystallization of igneous rocks. Future studies of

impact melts can provide unique insights into these long-

standing geological problems. Impact melt bodies occur in a

range of sizes, from small and rapidly cooled pods and dikes

up to the huge Sudbury Irruptive with its associated ore de-

posits. These bodies have formed, nearly instantaneously, in

a single melting event, from surrounding target rocks that

can generally be sampled and characterized. The largest and
best-preserved impact melt bodies are found as sills in the

crater-fill deposits, and they have cooled uniformly without

any addition of new magma. Their history and cooling envi-
ronment can be well constrained by information about the
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crater shape and the impactite deposits associated with them.

As igneous rocks, impact melts provide a degree ofsimplic-

it-y, information, and context that is only rarely found in en-

dogenic igneous rocks, and study of them will provide
fundamental information on 'all igneous rocks.

Detailed comparative studies of terrestrial impact melt
rocks and endogenic igneous rocks can also improve current

models for impact crater formation and impact melt genera-
tion. Is the current assumption that impact melt bodies are

homogeneously mixed target rock really correct at all scales?

Is there time fi_r chemical and mineralogical differentiation

in large bodies of impact melt (e.g., the Sudbury Irruptive),

or do the systematic variations observed have some other

cause? What can terrestrial impact melts tell us about the

origin and chemistry, of the very large bodies of impact melt

associated with the largest lunar impact basins?

8.7. IMPACTS AND THE EARLY EARTH

Even the largest and oldest known terrestrial impact struc-

tures [Sudbury (Canada) and Vredefort (South Africa)] are

only about 2 b.y. old and were only about 200-300 km in

diametcr when they formed. They are theretbre both small

and young by comparison with the earlier history of impact

events in the solar system. Preserved impact features on the

Moon, Mercur); and other planets exceed 1000 km in

diameter and are >4 b.y. old, and the ancient and heavily
cratered surfaces of the Moon and other planets show that

this period was a time of intense bombardment, when im-

pact rates were hundreds to thousands of times the present

low values (Fig. 1.13) (TayloT; 1975; 1982, Chapter 3; 1992,
Chapter 4; HOrz et al., 1991; Spudis, 1993).

Earth could not have escaped the heavy bombardment of

extraterrestrial objects at this time, and the present scarciD _

of old and large terrestrial impact structures reflects the con-

tinuous geological destruction and recycling of old terres-

trial rocks. We therefore face a major problem in exploring

the impact history of Earth: Just when impact events be-

come more frequent, larger, and potentially more important
(->3.8 Ga), the available record of these events becomes in-

creasingly destroyed. Are Sudbury and Vredefort the largest
and oldest impact structures that we can find preserved on

Earth? Or can we find the traces of larger and more ancient

impact events and understand their effects?

The evidence from other planets leaves no doubt that large

impacts on Earth were not only a major, but in fact the domi-

nant, process during early geologic time (->3.8 Ga). Com-

parisons with the lunar highlands (Grieve, 1980; Grieve

et al., 1990) suggest that as many as 200 impact basins

-_1000 km in diameter may have formed on Earth during

this period, accompanied by exponentially larger quantities

of smaller structures. Plausible geological effects of these
catastrophes include the formation of huge volumes of im-

pact melts, the triggering of widespread endogenic volcan-
ism from beneath a thin Archean crust, and the creation of

early continental nuclei (Frey, 1980; Grieve, 1980; Glikson,

1993, 1996a ). The effects above ground could be equally di-

sastrous. Large impacts could blast away existing atmos-

pheres and t aen replace them with water and other volatiles

carried in tte projectiles themselves. The development of

life on Eart _ could have followed an intermittent path in

which existi ng life forms were destroyed by large impacts

and new oncs formed from the organic compounds brought

in by the pro ectiles. Even in relatively recent times (->2.5 Ga),

sporadic lar t ie impacts could have produced major changes

in the igneot s and tectonic histories of Earth (Glikson, 1993,
1996a).

The sear,:h for traces of such events faces several prob-

lems. The ol ] rocks that would preserve them are scarce and

often highly metamorphosed, making it difficult to distin-
guish impac: effects from the results of normal geological

processes (e. g., Weihlen and Schulz, 1978). A second prob-

lem is uncer :aint)" about what very. large impact structures

would look I ke, even if well preserved. Larger impact struc-

tures (D > ?,00-300 kin) will generate relatively larger

amounts of i _elt, producing a wide, relatively shallow struc-

ture dominat .'d by melt rather than by more familiar impactite
breccias (Gri 're and Cintala, 1992; Cintala and Grieve, 1998 ).

Such structu ces might easily be removed by' erosion or mis-
taken for en, togenic bodies such as sills and lopoliths. The

possibili_ t_ at the well-known Bushveld Complex (South
Africa) mig_ t be such a melt-rich impact structure (Rhodes,

1975) has so far proved to be negative (e.g., French, 1990a),

but the deba :e and the searches go on.

Despite t rose difficulties, it may still be possible to rec-

ognize the tr tces of ancient impact events. Distinctive shock

features suct as shatter cones and pseudotachylite breccias

can be prese "red in even highly metamorphosed rocks, as

can distincti_ e geochemical signatures (e.g., iridium anoma-

lies) in brecc as and impact melts. It may also be possible to

recognize dis tal ejecta units from ancient impact events, and

such an orig n has been proposed for the unusual spherule
layers found !n >3-b.y.-old rocks of the Barberton Mountain

Land (Soud Africa) (Lowe and Byerly, 1986; Lowe et al.,

1989) and in 2.6-b.y.-old sediments in Australia (Simonson,
1992; Simon on and Davies, 1996; Simonson et al., 1997).

Definite sho_ k-metamorphic effects have not yet been found

in these sphe "ule beds, and their origin is still debated (e.g.,
French, 1987; Koeberl et aZ, 1993; Koeberl and Reimold, 1995),

but the mere preservation of such distinctive units in such

ancient rock_, is an encouraging sign for future searches.

A related ]_ossibility, speculative and exciting, is that even
thicker (10-7 00 m) layers ofejecta from large impact struc-

tures may' be preserved among the long-studied formations

of diamictitc s, unusual breccias currently regarded as the

products of _lacial activity' or other unusual sedimentation

processes (Ot erbeck et al., 1993; Rampino, 1994). These units

are an impor* ant target for future searches, and they should

be examined anew for shock-metamorphic effects (e.g.,
Reimold et al. 1997b).

The incre_ sing importance of meteorite impacts in Earth

history, the g owing recognition of preserved impact effects

in the geolo_ ical record, and the ease with which impact
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events can be recognized by their shock-metamorphic ef-

fects have combined to show geologists the importance of

new searches in the field. In the future, as geologists dis-

cover more ancient rocks, or as they reexamine formations

discovered long ago, the possibilities of impact -- and the

key signatures of impact events -- should be kept in mind.

During the brief history of meteorite impact geology, all

past predictions about the importance of impacts and the

range of their effects have turned out to be inaccurate and

unimaginative underestimates. Although a tot has been

learned in the last couple of decades, there is no reason to

expect that today's estimates will turn out to be any more

accurate. We must now do what geologists have always done

when suddenly faced with ideas that are new, exciting, poorly

explored, and only dimly understood. We must take the new

ideas out into the field and look at the rocks again.





Appendix

CRITERIA FOR RECOGNIZING TERRESTRIAL

IMPACT STRUCTURES

(expanded from Dence, 1972, pp. 78-79, and other sources)

1. SURFACE FORM AND GEOLOGIC STRUCTURE

Surface Expression and Shape:

occur in any kind of bedrock (crystalline, sediments, volcanic)

generally occur as single structures

rarely double or small multiple structures

larger structures not present as groups

generally circular

elliptical or noncircular in deformed structures

possible circular depression or definite crater

also possible circular uplifted region

may be expressed by physiographic features (e.g., topographic relief, drainage)

Size and Occurrence:

wide size range, from <1 km to >100 km diameter

occur in all geological terranes, bedrock (crystalline, sediments, volcanic)

only random association with other geological features

Relatively shallow

underlain by undeformed regional bedrock

unusual deformation extends less than one-third apparent diameter

Anomalous feature in regional topography, geology

unusual geology within circular area

local deformation: faulting, brecciation
unusual breccias, melt rocks within structure

serve to define structure

may be absent (deeply eroded structures)

similar breccias rarely present outside structure

deposits on or beyond rim

in structures with well-defined crater morphology

central uplift of deeper-seated rocks (in larger structures)

may form central peak or central ring

show definite stratigraphic uplift
rocks may contain distinctive shatter cones*

unique conical fractures, striated

restored apexes point inward/upward

Vague or ambiguous descriptions in previous literature

deformation recognized in earlier studies (intense, sudden, localized)

conventional endogenic mechanisms not adequate

vague mechanisms proposed

unusual volcanic explosions

("cryptoexplosions")

* Indicates unique shock-metamorphic features that provide definite evidence for meteorite impact origin.
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CRITERIA FOR RECOGNIZING "?ERRESTRIAL

IMPACT STRUCTURES

1. SURFACE FORM AND GEOLOGIC STf.UCTURE (continued)

Brecciation: may be widespread in surface, subsurface s tmples
breccia zones in bedrock below crater

around rims or in central uplift areas

generally in-place monomict breccias
rare dike-like bodies ofpolymict breccia, melt

unusual pseudotachylite breccias

polymict breccias and melt rocks

may form blanket-like, layered units (crater fill[

in central regions (small structures)

as annular units around central uplifts (larger st ructures)

2. GEOPHYSICAL CHARACTf RISTICS

G ravity Signature:

may show circular anomaly following structure

typically negative (breccias and sedimentary fill)
may be positive (larger structures; uplift)

may also be lacking

Magnetic Signature:

no distinctive typical pattern

regional anomalies outside structure may be interru I_ted, subdued, merged
within structure

may be positive anomalies over specific areas

melt-bearing rocks, breccias

uplifted deep-seated magnetic rocks

Seismic Characteristics:

lower seismic velocities within structure

(from brecciation; presence of sedimentary fill)

regional stratigraphy interrupted by structure

deep seismic reflectors disrupted; chaotic patteJ n

regional structure again becomes continuous at relal ively shallow depths
beneath sur{Zacestructure

no evidence of deep roots or connections for structt re

around margins, presence of concentric shallo,a inward Faults, producing
terraced rims

3. ROCKTYPES: GENERAL CHARkCTERISTICS

Monomict Breccias:

abundance, distribution reflect nature of bedrock

(homogeneous/heterogeneous)
areas within bedrock below, around structure

layers in units that fill structure

no abnormal deformation in component clasts

bulk chemical compositions are those of associated ocal bedrock

no siderophile-element anomalies (iridium content_, osmium isotopes)

* Indicates unique shock-metamorphic features that provide definite evidence for meteorite impact origin.
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CRITERIA FOR RECOGNIZING TERRESTRIAL

IMPACT STRUCTURES

3. ROCK TYPES: GENERAL CHARACTERISTICS (continued)

Polymict Breccias:

occurrence: various possible locations:
intrusive dike-like bodies in bedrock

irregular horizontal layers within structure

(may be transitional with melt rocks)

along/outside rim of structure (ejecta)

rare: only in well-preserved structures

rock fragments: derived from local bedrock only

exotic rock types rare to absent

both melt-bearing and melt-flee varieties present
melt-bearing: diverse types:

melt as discrete fragments; clastic matrix
melt-matrix, with bedrock clasts

melt-bearing types:

resemble endogenic volcanic breccias, e.g., ash-flow tufts, intrusive breccias

lack typical volcanic features

no phenocrysts, cogenetic volcanic rocks

all fragments are broken bedrock clasts

may contain distinctive cored inclusions
(melt rim around bedrock clast)

breccia units appear deposited all at once

no evidence for prolonged volcanic activity
no erosional horizons observed between units

bedrock inclusions often show unusual, distinctive petrographic deformation
features

bulk chemical compositions equivalent to compositions of mixed local

bedrock types

siderophile-element anomalies* may be present

(iridium contents, osmium isotopes)

Melt Rocks:

occur in diverse locations

dike-like bodies in substructure bedrock

sill-like units within structure

interbedded with breccias

display range of typical igneous textures

features reflect size, cooling rate

transitional with melt-bearing breccias

included rock fragments often display unusual petrographic deformation,

melting, and recrystallization textures

bulk chemical compositions equivalent to compositions of mixed local

bedrock types

may show siderophile-element anomalies*
(iridium contents, osmium isotopes)

* Indicates unique shock-metamorphic features that provide definite evidence for meteorite impact origin.
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CRITERIA FOR RECOGNIZING "]'ERRESTRIAL

IMPACT STRUCTURI _S

4. MICROSCOPIC DEFORMATION AND I_ [ELTING FEATURES

Found in a variety of rock types and locations in structm e

(1) in-place bedrock in center of structure

(rarely preserved or exposed)

may be associated with shatter cones*

(2) bedrock inclusions in polymict breccias and meh rocks

Not present in rim bedrock or monomict breccia clasts

General characteristics of deformation

quartzofeldspathic rocks most sensitive, best indicat 3rs

sdective: each mineral responds in isolation

pervasive: generally affects each mineral grain

locally variable." strong differences in deformation intensity over small areas

may be small local glassy veins, pods in rock

range of effects: progressive deformation, melting

progressive destruction of original fabric

Fracturing (may not be distinguishable from effects ofo her geological processes)

intense, closely spaced parallel sets may be shock-pr )duced
may be associated with definite shock-deformation _atures

Unique mineral deformation features (shock-produced)

planar deformation features (PDFs)* in quartz, feld spar

multiple sets at distinct orientations

may be fresh (continuous) or "decorated" (inclu ;ions)

Brazil twins parallel to base (0001)

diaplectic glasses*, e.g. maskelynite (feldspar)

high-pressure mineral phases*:
coesite, stishovite, diamond

Selective mineral melting* of specific minerals in rock
individual minerals melt; associated minerals not aff _cted

melted minerals may show incipient flow, vesiculatii n

transitions to completely melted rock fragments, he_ erogeneous glasses

Unusual (high-temperature) melting effects* in rock fra ,_ments

melting, decomposition of normally refractory mine als

e.g., zircon, sphene* (T > 1400°-1700°C)

quartz-9 lechatelierite* (T > 1713°C)

evidence of rapid quenching, disequilibrium

Unusual heterogeneous glass fragments (e.g., Fladen)
mixed rock/mineral fragments in heterogeneous gla.. s

included rock/mineral clasts show range of unusual teformation,

melting effects

lechatefierite* bands, strings (schlieren) present in tic w-banded glass

strong indications of disequilibrium, rapid quenching

Deformation, melting textures:

show modification or complete destruction by later }_rocesses

(secondary recrystallization, hydrothermal activity, n _etamorphism)

* Indicates unique shock-metamorphic features that provide definite .'vidence for meteorite impact origin.
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